首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brush border, isolated from chicken intestine epithelial cells, contains the 95,000 relative molecular mass (M(r)) polypeptide, villin. This report describes the purification and characterization of villin as a Ca(++)-dependent, actin bundling/depolymerizing protein. Then 100,000 g supernatant from a Ca(++) extract of isolated brush borders is composed of three polypeptides of 95,000 (villin), 68,000 (fimbrin), and 42,000 M(r) (actin). Villin, following purification from this extract by differential ammonium sulfate precipitation and ion-exchange chromatography, was mixed with skeletal muscle F-actin. Electron microscopy of negatively stained preparations of these villin-actin mixtures showed that filament bundles were present. This viscosity, sedimentability, and ultrastructural morphology of filament bundles are dependent on the villin:actin molar ratio, the pH, and the free Ca(++) concentration in solution. At low free Ca(++) (less than 10(-6) M), the amount of protein in bundles, when measured by sedimentation, increased as the villin: actin molar ratio increased and reached a plateau at approximately a 4:10 ratio. This behavior correlates with the conversion of single actin filaments into filament bundles as detected in the electron microscope. At high free Ca(++) (more than 10(-6) M), there was a decrease in the apparent viscosity in the villin-actin mixtures to a level measured for the buffer. Furthermore, these Ca(++) effects were correlated with the loss of protein sedimented, the disappearance of filament bundles, and the appearance of short fragments of filaments. Bundle formation is also pH-sensitive, being favored at mildly acidic pH. A decrease in the pH from 7.6 to 6.6 results in an increase in sedimentable protein and also a transformation of loosly associated actin filaments into compact actin bundles. These results are consistent with the suggestions that villin is a bundling protein in the microvillus and is responsible for the Ca(++)-sensitive disassembly of the microvillar cytoskeleton. Thus villin may function in the cytoplasm as a major cytoskeletal element regulating microvillar shape.  相似文献   

2.
Different calcium dependence of the capping and cutting activities of villin   总被引:17,自引:0,他引:17  
The concentration of ionized calcium required for the capping of barbed filament ends by villin is about 4 orders of magnitude lower than that required for the cutting activity of villin. Capping was 50% complete at about 10-30 nM Ca2+, a level expected in resting cells, whereas the cutting rate was half-maximal at about 200 microM, making it possible to completely separate filament capping from filament cutting. Analysis of capping in terms of coupled equilibria between calcium binding to villin and calcium-villin binding to the barbed ends of actin filaments gives a value of 10(16)-10(17) M-2 for the product of the two binding constants. By comparison the binding constant reported for the rapidly exchanging calcium sites on villin is 2 X 10(5) M-1 and that for binding of calcium-saturated villin to barbed ends has a minimum value of 10(11) M-1 giving a product of 2 X 10(16) M-1. The close similarity of the two sets of values suggests that capping is regulated by the rapidly exchanging calcium sites on villin. In terms of coupled equilibria the calcium requirement for filament capping decreases with increasing concentrations of free villin. The scant information on the mechanism of cutting allows only an estimate of the maximal value for the calcium-binding constant of the site regulating cutting which is about 2-5 X 10(3) M-1. Cutting is followed by rapid capping of the newly released barbed ends.  相似文献   

3.
Villin, a 95,000 dalton polypeptide of intestinal brush border which is known to bundle or sever actin filaments in a Ca++-dependent manner, was localized in rat and chicken intestinal epithelium by means of immunocytochemistry at the light- and electron-microscopic levels. Specific antibodies to villin were raised in rabbits immunized with villin purified from chicken intestinal epithelium. Anti-villin bound selectively to the microvillus filament bundle from its tip down to the rootlets. These findings indicate that the well-known stability of rootlet filaments towards elevated Ca++ ion concentrations cannot be explained by the absence of villin. Therefore additional factors must exist which prevent the rootlets from Ca++-villin mediated disassembly.  相似文献   

4.
A family of homologous actin-binding proteins sever and cap actin filaments and accelerate actin filament assembly. The functions of two of these proteins, villin and gelsolin, and of their proteolytically derived actin binding domains were compared directly by measuring their effects, under various ionic conditions, on the rates and extents of polymerization of pyrene-labeled actin. In 1 mM Ca2+ and 150 mM KCl, villin and gelsolin have similar severing and polymerization-accelerating properties. Decreasing [Ca2+] to 25 microM greatly reduces severing by villin but not gelsolin. Decreasing [KCl] from 150 to 10 mM at 25 microM Ca2+ increases severing by villin, but not gelsolin, over 10-fold. The C-terminal half domains of both proteins have Ca2+-sensitive actin monomer-binding properties, but neither severs filaments nor accelerates polymerization. The N-terminal halves of villin and gelsolin contain all the filament-severing activity of the intact proteins. Severing by gelsolin's N-terminal half is Ca2+-independent, but that of villin has the same Ca2+ requirement as intact villin. The difference in Ca2+ sensitivity extends to 14-kDa N-terminal fragments which bind actin monomers and filament ends, requiring Ca2+ in the case of villin but not gelsolin. Severing of filaments by villin and its N-terminal half is shown to be inhibited by phosphatidylinositol 4,5-bisphosphate, as shown previously for gelsolin (Janmey, P.A., and Stossel, T.P. (1987) Nature 325, 362-364). The functional similarities of villin and gelsolin correlate with known structural features, and the greater functional dependence of villin on Ca2+ compared to gelsolin is traced to differences in their N-terminal domains.  相似文献   

5.
J R Glenney  P Kaulfus  K Weber 《Cell》1981,24(2):471-480
We have studied the mechanism of Ca++-dependent restriction of actin filament length by villin, one of the major actin-associated proteins of intestinal microvilli microfilament bundles. Villin acts, even at a ratio of 1 to 1000 with respect to actin, very efficiently as a Ca++-dependent nucleation factor on actin assembly. This gives rise to unidirectional assembly, with the morphologically defined "barbed" end of the resulting filament being capped. Consequently, at steady state treadmilling of actin monomers through the filament is inhibited. Increase of the villin-to-actin ratio enhances the number of nucleated filaments necessarily shorter in length. This results finally in nonsedimentable F actin and a low molecular weight complex of one villin and three monomeric actins, which itself is a potent nucleator. Thus restriction of actin assembly by villin is not due to a direct inhibition of assembly but arises as the consequence of strongly enhanced nucleation followed by unidirectional elongation at the pointed end of the nucleated filaments. In addition, in the presence of Ca++-villin, but not the villin-actin complex, seems able to "break" or "sever" preformed F actin filaments. Thus a variety of cellular phenomena-nucleation, unidirectional assembly, filament end capping, nonpolymerizable actin and F actin bundles-can be observed in vitro in a two-protein component system modulated by the concentration of free Ca++.  相似文献   

6.
All proteins of the villin superfamily, which includes the actin-capping and -severing proteins such as gelsolin, scinderin, and severin, are calcium-regulated actin-modifying proteins. Like some of these proteins, villin has morphologically distinct effects on actin assembly depending on the free calcium concentrations. At physiological calcium (Ca2+) villin nucleates and bundles actin, whereas at higher concentrations it caps (>50 microm) and severs (>200 microM) actin filaments. Although Ca(2+)-binding sites have been described in villin, the functional characterization of these sites has not been done previously. In the present study we functionally dissect the calcium-dependent actin-capping and -depolymerizing sites in villin. Our analysis reveals that villin binds Ca2+ with a Kd of 80.5 microM, a stoichiometry of 5.97, and a Hill's coefficient of 1.2. Using the NMR structure of villin 14T and the gelsolin-actin/Ca2+ crystal structure, six putative sites that result in Ca(2+)-induced conformational changes were identified in human villin and confirmed by mutational analysis. Molecular dynamics studies support the mutational analysis and provide a model for structural difference in the A93G mutant that prevents the calcium-induced conformational changes in the S1 domain of villin. Furthermore, we determined that villin expresses at least two types of Ca(2+)-sensitive sites that determine separate functional properties; site 1 (Glu-25, Asp-44, and Glu-74) regulates actin-capping, whereas sites 1 and 2 (Asp-86, Ala-93, and Asp-61), together with the intra-domain calcium-sensitive sites in villin, regulate actin depolymerization by villin. This is the first study that employs sequential mutagenesis to biochemically and functionally characterize the calcium-sensitive sites in villin. Such mutational analysis and functional characterization of the actin-capping and -depolymerizing sites are unknown for other proteins of the villin family.  相似文献   

7.
《The Journal of cell biology》1985,101(5):1850-1857
We have used two actin-binding proteins of the intestinal brush border, TW 260/240 and villin, to examine the effects of filament cross-linking and filament length on myosin-actin interactions. TW 260/240 is a nonerythroid spectrin that is a potent cross-linker of actin filaments. In the presence of this cross-linker we observed a concentration- dependent enhancement of skeletal muscle actomyosin ATPase activity (150-560% of control; maximum enhancement at a 1:70-80 TW 260/240:actin molar ratio). TW 260/240 did not cause a similar enhancement of either acto-heavy meromyosin (HMM) ATPase or acto-myosin subfragment-one (S1) ATPase. Villin, a Ca2+-dependent filament capping and severing protein of the intestinal microvillus, was used to generate populations of actin filaments of various lengths from less than 20 nm to 2.0 microns; (villin:actin ratios of 1:2 to 1:4,000). The effect of filament length on actomyosin ATPase was biphasic. At villin:actin molar ratios of 1:2- 25 actin-activated myosin ATPase activity was inhibited to 20-80% of control values, with maximum inhibition observed at the highest villin:actin ratio. The ATPase activities of acto-HMM and acto-S1 were also inhibited at these short filament lengths. At intermediate filament lengths generated at villin:actin ratios of 1:40-400 (average lengths 0.26-1.1 micron) an enhancement of actomyosin ATPase was observed (130-260% of controls), with a maximum enhancement at average filament lengths of 0.5 micron. The levels of actomyosin ATPase fell off to control values at low concentrations of villin where filament length distributions were almost those of controls. Unlike intact myosin, the actin-activated ATPase of neither HMM nor S1 showed an enhancement at these intermediate actin filament lengths.  相似文献   

8.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

9.
The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the dissociation of up to 30% of the villin and fimbrin from the cores but does not affect actin binding by 110-kD calmodulin. Low speed sedimentation assays and ultrastructural analysis show that the tropomyosin-containing cores remain bundled, and that 110-kD calmodulin remains attached to the core filaments. The effects of tropomyosin on the binding and bundling activities of villin were subsequently determined by sedimentation assays. Villin binds to F-actin with an apparent Ka of 7 X 10(5) M-1 at approximate physiological ionic strength, which is an order of magnitude lower than that of intestinal epithelial cell tropomyosin. Binding of villin to F-actin presaturated with tropomyosin is inhibited relative to that to pure F-actin, although full saturation can be obtained by increasing the villin concentration. Villin also inhibits the binding of tropomyosin to F-actin, although not to the same extent. However, tropomyosin strongly inhibits bundling of F-actin by villin, and bundling is not recovered even at a saturating villin concentration. Since villin has two actin-binding sites, both of which are required for bundling, the fact that tropomyosin inhibits bundling of F-actin under conditions where actin is fully saturated with villin strongly suggests that tropomyosin's and one of villin's F-actin-binding sites overlap. These results indicate that villin and tropomyosin could compete for actin filaments in the intestinal epithelial cell, and that tropomyosin may play a major role in the regulation of microfilament structure in these and other cells.  相似文献   

10.
Using a Mg2+ rather than the standard Ca2+ precipitation method microvillus membrane vesicles of porcine intestinal epithelial cells with a relatively well preserved cytoskeleton are obtained. Such vesicles are long and relatively straight and retain some of the core filament structure typical of non-vesicularized microvilli. They are therefore a good starting material for the purification of mammalian F-actin bundling proteins. We have purified the two previously predicted bundling proteins villin and fimbrin from such preparations and show that in most but not all aspects they resemble their counterparts in chicken microvilli. The now documented F-actin severing activity of purified porcine villin explains the easy vesicularization of porcine microvilli in the traditional Ca2+ precipitation method.  相似文献   

11.
Calcium dependence of villin-induced actin depolymerization   总被引:8,自引:0,他引:8  
T P Walsh  A Weber  K Davis  E Bonder  M Mooseker 《Biochemistry》1984,23(25):6099-6102
"Cutting" of actin filaments by villin was evaluated from the time course of filament depolymerization. Depolymerization was initiated by diluting polymerized actin, labeled with a fluorescent probe on either lysine-374 or cysteine-375, to a concentration well below the critical into a medium containing free villin and various concentrations of calcium (in addition to potassium and magnesium). It was observed that at high calcium concentrations (200 microM) the time course of depolymerization could not be described by the single exponential that defines it at low calcium and low villin levels. Instead, at high calcium, the exponent increased with time and the rate of depolymerization became greater than that of controls in the absence of villin. This contrasts with the inhibition of depolymerization by villin at low calcium. The latter inhibition is a consequence of the capping of the barbed filament end by villin as are the inhibition of filament elongation and the elevation of the critical concentration. Evidence is presented that the effects of villin at high calcium are the result of cutting of the actin filaments by villin. It thus appears that different calcium binding sites control capping and cutting and that the calcium binding sites regulating cutting have a much lower affinity for calcium than the sites regulating capping of the barbed filament ends.  相似文献   

12.
Two actin-modulating proteins have been purified from toad oocytes. A high-molecular weight protein, similar in structure and function to macrophage actin-binding protein, accounts for the isotropic actin-crosslinking activity in oocyte homogenates. A calcium-dependent activity in toad oocyte homogenates which shortens actin filaments is accounted for by a 95,000-dalton protein which resembles villin, an actin-severing and -bundling protein of avian epithelial brush borders. In the presence of high (? μM) calcium, this protein shortens actin filaments in a concentration-dependent fashion and stimulates filament assembly when added to monomeric actin. In the absence of calcium the protein promotes the formation of actin filament bundles. Therefore, in the toad oocyte actin can be crosslinked into a network by actin-binding protein. Calcium regulation of the actin network may be mediated by villin. These results are different from those reported in echinoderm eggs.  相似文献   

13.
Affinity chromatography of Ca2+-containing extracts of platelets on DNAase I-Sepharose, using Ca2+-free buffer as eluant, selects a 1:1 complex of a 90 000-dalton protein with actin. The complex shows little interaction with either DNAase or actin unless Ca2+ is present. In the presence of Ca2+, the complex nucleates polymerization of actin, reduces the viscosity attained, and delays filament formation from profilactin with characteristics closely resembling those shown by chicken villin. Proteolysis of the native proteins indicates structural similarity between the platelet protein and villin or villin core; limited proteolytic digestion in the presence of SDS distinguishes the platelet protein from villin but not from the functionally related plasma protein, brevin. The platelet protein is not accessible to enzyme-mediated iodination of surface components on intact cells. The term 'platelet brevin' is proposed for the protein.  相似文献   

14.
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide-stimulated cells was examined. F-actin was quantified by the TRITC-labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar.  相似文献   

15.
Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.  相似文献   

16.
We have re-examined the Ca(++)-dependent interaction of an intestinal microvillar 95- kdalton protein (MV-95K) and actin using the isolated acrosomal process bundles from limulus sperm. Making use of the processes as nuclei for assembling actin filaments, we quantitatively and qualitatively examined MV-95K’s effect on filament assembly and on F- actin, both in the presence and in the absence of Ca(++). The acrosomal processes are particularly advantageous for this approach because they nucleate large numbers of filaments, they are extremely stable, and their morphology can be used to determine the polarity of any nucleated filaments. When filament nucleation was initiated in the presence of MV-95K and the absence of Ca(++), there was biased filament assembly from the bundle ends. The calculated elongation rates from both the barbed and pointed filament ends were virtually indistinguishable from control preparations. In the presence of Ca(++), MV-95K completely inhibited filament assembly from the barbed filament end without affecting the initial rate of assembly from the pointed filament end. The inhibition of assembly results from MV-95K binding to and capping the barbed filament end, thereby preventing monomer addition. This indicates that, while MV-95K is a potent nucleator of actin assembly, it is also a potent inhibitor of actin filament elongation. To examine the effects of MV-95K on F-actin in the presence of Ca(++), we developed an assay where MV-95K is added to filaments previously assembled from acrosomal processes without causing filament breakage during mixing. These results clearly demonstrated that rapid filament shortening by MV-95K results through a mechanism of disrupting intrafilament monomer-monomer interactions. Finally, we show that tropomyosin-containing actin filaments are insensitive to cutting, but not to capping, by MV-95K in the presence of Ca(++).  相似文献   

17.
Meng J  Vardar D  Wang Y  Guo HC  Head JF  McKnight CJ 《Biochemistry》2005,44(36):11963-11973
Villin-type headpiece domains are approximately 70 amino acid modular motifs found at the C terminus of a variety of actin cytoskeleton-associated proteins. The headpiece domain of villin, a protein found in the actin bundles of the brush border epithelium, is of interest both as a compact F-actin binding domain and as a model folded protein. We have determined the high-resolution crystal structures of chicken villin headpiece (HP67) at 1.4 A resolution as well as two mutants, R37A and W64Y, at 1.45 and 1.5 A resolution, respectively. Replacement of R37 causes a 5-fold reduction in F-actin binding affinity in sedimentation assays. Replacement of W64 results in a much more drastic reduction in F-actin binding affinity without significant changes in headpiece structure or stability. The detailed comparison of these crystal structures with each other and to our previously determined NMR structures of HP67 and the 35-residue autonomously folding subdomain in villin headpiece, HP35, provides the details of the headpiece fold and further defines the F-actin binding site of villin-type headpiece domains.  相似文献   

18.
We have previously shown that tyrosine phosphorylation of the actin-regulatory protein villin is accompanied by the redistribution of phosphorylated villin and a concomitant decrease in the F-actin content of intestinal epithelial cells. The temporal and spatial correlation of these two events suggested that tyrosine phosphorylation of villin may be involved in the rearrangement of the microvillar cytoskeleton. This hypothesis was investigated by analyzing the effects of tyrosine phosphorylation of villin on the kinetics of actin polymerization by reconstituting in vitro the tyrosine phosphorylation of villin and its association with actin. Full-length recombinant human villin was phosphorylated in vitro by expression in the TKX1-competent cells that carry an inducible tyrosine kinase gene. The actin-binding properties of villin were examined using a co-sedimentation assay. Phosphorylation of villin did not change the stoichiometry (1:2) but decreased the binding affinity (4.4 microm for unphosphorylated versus 0.6 microm for phosphorylated) of villin for actin. Using a pyrene-actin-based fluorescence assay, we demonstrated that tyrosine phosphorylation had a negative effect on actin nucleation by villin. In contrast, tyrosine phosphorylation enhanced actin severing by villin. Electron microscopic analysis showed complementary morphological changes. Phosphorylation inhibited the actin bundling and enhanced the actin severing functions of villin. Taken together our data show that tyrosine phosphorylation of villin decreases the amount of villin bound to actin filaments, inhibits the actin-polymerizing properties of villin, and promotes the actin-depolymerizing functions instead. These observations suggest a role for tyrosine phosphorylation in modulating the microvillar cytoskeleton in vivo by villin in response to specific physiological stimuli.  相似文献   

19.
Ca2(+)-regulated native thin filaments were extracted from sheep aorta smooth muscle. The caldesmon content determined by quantitative gel electrophoresis was 0.06 caldesmon molecule/actin monomer (1 caldesmon molecule per 16.3 actin monomers). Dissociation of caldesmon and tropomyosin from the thin filament and the depolymerization of actin was measured by sedimenting diluted thin filaments. Actin critical concentration was 0.05 microM at 10.1 and 0.13 at 10.05 compared with 0.5 microM for pure F-actin. Tropomyosin was tightly bound, with half-maximal dissociation at less than 0.3 microM thin filaments (actin monomer) under all conditions. Caldesmon dissociation was independent of tropomyosin and not co-operative. The concentration of thin filaments where 50% of the caldesmon was dissociated (CD50) ranged from 0.2 microM (actin monomer) at 10.03 to 8 microM at 10.16 in a 5 mM-MgCl2, pH 7.1, buffer. Mg2+, 25 mM at constant I, increased CD50 4-fold. CD50 was 4-fold greater at 10(-4) M-Ca2+ than at 10(-9) M-Ca2+. Aorta heavy meromyosin (HMM).ADP.Pi complex (2.5 microM excess over thin filaments) strongly antagonized caldesmon dissociation, but skeletal-muscle HMM.ADP.Pi did not. The behaviour of caldesmon in native thin filaments was indistinguishable from caldesmon in reconstituted synthetic thin filaments. The variability of Ca2(+)-sensitivity with conditions observed in thin filament preparations was shown to be related to dissociation of regulatory caldesmon from the thin filament.  相似文献   

20.
We elucidated the mechanism by which gelsolin, a Ca2+-dependent regulatory protein from lung macrophages, controls the network structure of actin filaments. In the presence of micromolar Ca2+, gelsolin bound Ca2+. The Ca2+-gelsolin complex reduced the apparent viscosity and flow birefringence of F-actin and the lengths of actin filaments viewed in the electron microscope. However, concentrations of gelsolin causing these alterations did not effect proportionate changes in the turbidity of actin filament solutions or in the quantity of nonsedimentable actin as determined by a radioassay. From these findings, we conclude that gelsolin shortens actin filaments without net depolymerization. Such an effect on the distribution of actin filament lengths led to the prediction that low concentrations of gelsolin would increase the critical concentration of actin-binding protein required for incipient gelation of actin filaments in the presence of Ca2+, providing an efficient mechanism for controlling actin network structure. We verified the prediction experimentally, and we estimated that the Ca2+-gelsolin complex effectively breaks the bond between actin monomers in filaments with a stoichiometry of 1:1. The effect of Ca2+-gelsolin complex on actin solation was rapid, independent of temperature between 0 degrees and 37 degrees C, and reversed by reducing the free Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号