首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Three genes hemE, hemF, hemG taking part in the porphyrin biosynthesis of Bacillus subtilis were mapped by two- and tree-factor transduction crosses. The gene hemE determines uroporphyrinogen decarboxylase (EC 4.1.1.37) the gene hemF coproporyphyrinogen oxidase (EC 1.3.3.3) and the gene hemG, ferrochelatase (EC 4.99. 1.1) enzymes. The loci hemE, hemF, hemG, are not linked to hemA locus and located near the argC and metD loci.  相似文献   

2.
To study the post-uroporphyrin steps in heme and chlorophyll biosynthesis in Chlorobium, we attempted to clone the uroporphyrinogen decarboxylase (hemE) gene. A Chlorobium genomic library was used to transform a restriction-minus Salmonella typhimurium strain. The recombinant DNA molecules were transduced into an auxotrophic Salmonella double mutant (hemA hemE) by phage P22. Faster-growing colonies indicated complementation of the hemE mutation. Each clone was tested by backcross transduction of the mutant. Growth rates of the confirmed clones in LB medium were comparable to wild-type Salmonella. HPLC analysis of the substrate (uroporphyrinogen) and the product (coproporphyrinogen) of the decarboxylase activity was performed in one such clone. This clone showed an active hemE gene within a 4-kb insert. Received: 21 February 2002 / Accepted: 8 May 2002  相似文献   

3.
Non-antibiotic,efficient selection for alfalfa genetic engineering   总被引:2,自引:0,他引:2  
A selectable marker gene (SMG), usually conferring resistance to an antibiotic or herbicide, is generally introduced into the plant cells with the gene(s) for the trait of interest to allow only the cells that have integrated and express the foreign sequences to regenerate into a plant. The availability of several SMGs for each plant species is useful for both basic and applied research to combine several genes of interest in the same plant. A selection system based on gabaculine (3-amino-2,3-dihydrobenzoic acid) as the selective substance and the bacterial hemL gene [encoding a mutant for of the enzyme glutamate 1-semialdehyde aminotransferase (GSA-AT)] as the SMG was previously used for genetic transformation of tobacco. The hemL gene is a good candidate for a safe SMG, because GSA-AT is present in all plants and is likely involved in one metabolic step only, so that unintended effects of its overexpression in plants are not probable. In this work, we have compared this new selection system with the conventional, kanamycin-based system for alfalfa Agrobacterium-mediated transformation. The hemL and NptII genes were placed together into a T-DNA under the control of identical promoters and terminators. We show that the gabaculine-based system is more efficient than the conventional, kanamycin-based system. The inheritance of hemL was Mendelian, and no obvious phenotypic effect of its expression was observed.  相似文献   

4.

Purpose of work  

To clone, express and characterize uroporphyrinogen III synthase/methyltransferase gene (cobA/hemD) from Lactobacillus reuteri.  相似文献   

5.
During shotgun cloning of an amylase gene, we found a transform ant of Escherichia coli with a reddish color. The transform ant produced highly water-soluble red pigments the molecular masses of which were less than 3000. The plasmid harbored by the transform ant contained a DNA fragment derived from a strain of Bacillus stearothermophilus. Truncation of the insert DNA showed that an 1.1-kbp Sau 3A–SalI fragment was responsible for the reddish colony. An open reading frame was found in the nucleotide sequence of the 1.1-kbp DNA fragment. The production of the red pigment was accompanied by a colorless 28-kDa protein. The sequence of the 28-kDa protein was highly homologous to bacterial uroporphyrinogen III methylases participating in corrinoid biosynthesis. The 28-kDa protein was found to be a thermostable uroporphyrinogen III methylase.  相似文献   

6.
Thiobacillus ferrooxidans AP19-3 has a novel NADH-dependent sulfite reductase in the periplasmic space. The gene responsible for the appearance of NADH-dependent sulfite reductase activity was cloned into a vector plasmid pBR322 to give a 5.7-kb hybrid plasmid, pTHS1, which contains a 1.3-kb DNA fragment of T. ferrooxidans AP19-3. When pTHS1 was used to transform sulfite reductase deficient E. coli mutants, strain AT2455 (cysG), JM246 (cysl), and AT2427 (cysJ), it complemented only the E. coli cysG mutation. Since cysG codes for S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase, the enzyme involved in siroheme synthesis, the results indicate that the DNA region that codes for S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase is present in a T. ferrooxidans 1.3 kb DNA fragment on pTHS1.  相似文献   

7.
Porphobilinogen deaminase (hydroxymethylbilane synthase) and uroporphyrinogen III synthase (uroporphyrinogen III cosynthase) catalyze the transformation of four molecules of porphobilinogen, via the 1-hydroxymethylbilane, preuroporphyrinogen, into uroporphyrinogen III. A combination of studies involving protein chemistry, molecular biology, site-directed mutagenesis, and the use of chemically synthesized substrate analogs and inhibitors is helping to unravel the complex mechanisms by which the two enzymes function. The determination of the X-ray structure ofE. coli porphobilinogen deaminase at 1.76 Å resolution has provided the springboard for the design of further experiments to elucidate the precise mechanism for the assembly of both the dipyrromethane cofactor and the tetrapyrrole chain. The human deaminase structure has been modeled from theE. coli structure and has led to a molecular explanation for the disease acute intermittent porphyria. Molecular modeling has also been employed to simulate the spiro-mechanism of uroporphyrinogen III synthase.  相似文献   

8.
9.
The mutant glutamate-1-semialdehyde aminotransferase (GSA-AT) enzyme encoded by the hemL gene of the gabaculine-resistant cyanobacterium Synechococcus PCC6301 strain GR6 was expressed in tobacco following Agrobacterium-mediated transformation of leaf discs. When targeted to plastids, the GR6 hemL gene product conveyed gabaculine resistance to transgenic plants. Selection using 50 and 100 µM gabaculine was shown to produce two distinct explant phenotypes: 'greens' and 'whites'. T1 progeny displayed Mendelian segregation ratios, and PCR analysis demonstrated the 'green' phenotype corresponded with the presence of the GR6 hemL gene. Furthermore, 'whites' could be rescued after 9 days growth on solid media containing between 5 µM and 25 µM gabaculine, allowing the potential use of this system for the isolation of gabaculine-sensitive transformants in mutagenesis screening. The use of GR6 hemL as a selectable marker gene provides a novel enzyme-based method for the selection of transgenic regenerants without the need for antibiotic-resistance markers.  相似文献   

10.
The crystallographic structure of the Pseudomonas denitrificans S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase (SUMT), which is encoded by the cobA gene, has been solved by molecular replacement to 2.7A resolution. SUMT is a branchpoint enzyme that plays a key role in the biosynthesis of modified tetrapyrroles by controlling flux to compounds such as vitamin B(12) and sirohaem, and catalysing the transformation of uroporphyrinogen III into precorrin-2. The overall topology of the enzyme is similar to that of the SUMT module of sirohaem synthase (CysG) and the cobalt-precorrin-4 methyltransferase CbiF and, as with the latter structures, SUMT has the product S-adenosyl-L-homocysteine bound in the crystal. The roles of a number of residues within the SUMT structure are discussed with respect to their conservation either across the broader family of cobalamin biosynthetic methyltransferases or within the sub-group of SUMT members. The D47N, L49A, F106A, T130A, Y183A and M184A variants of SUMT were generated by mutagenesis of the cobA gene, and tested for SAM binding and enzymatic activity. Of these variants, only D47N and L49A bound the co-substrate S-adenosyl-L-methionine. Consequently, all the mutants were severely restricted in their capacity to synthesise precorrin-2, although both the D47N and L49A variants produced significant quantities of precorrin-1, the monomethylated derivative of uroporphyrinogen III. The activity of these variants is interpreted with respect to the structure of the enzyme.  相似文献   

11.
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.  相似文献   

12.
1. Uroporphyrinogen decarboxylase which catalyzes the formationof coproporphyrinogen from uroporphyrinogen is located in thesoluble fraction of tobacco leaves and was purified 72 foldthrough ammonium sulphate precipitation and calcium phosphosphategel absorption. 2. Kinetic studies indicated that the apparentMichaelis constant was 1 ? 10-6 M for uroporphyrinogen III (pH6.5; 37?C). Uroporphyrinogen III served as a much better substratethan uroporphyrinogen I under the standard conditions of thisstudy. 3. Enzyme activity was inhibited by thiol reagents andheavy divalent cations and was stimulated by some chelatingagents. 4. Both chloride and fluoride salts inhibited the formationof coproporphyrinogen from uroporphyrinogen. 1Present address: Department of Chemistry, Simon Fraser University,Burnaby 2, British Columbia, Canada. 2Present address: Biology Department, Utah State University,Logan, Utah 84322, U. S. A. (Received June 8, 1974; )  相似文献   

13.
The type III heptacarboxylic porphyrinogens derived from enzymic decarboxylation of an acetic acid substituent on uroporphyrinogen III to a methyl group by human hepatic uroporphyrinogen decarboxylase has been analysed by reversed-phase high-performance liquid chromatography with electrochemical detection. The results showed that all four possible heptacarboxylic acid porphyrinogen isomers, with the methyl group attached to rings A, B, C and D of the tetrapyrrole macrocycle, respectively, were formed in almost equal proportions. It was concluded that the normal pathway of uroporphyrinogen III decarboxylation in human liver follows a random mechanism.  相似文献   

14.
An S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (SUMT) activity has been identified in Methanobacterium ivanovii and was purified 4,500-fold to homogeneity with a 38% yield. The enzyme had an apparent molecular weight of 58,200 by gel filtration and consisted of two identical subunits of Mr 29,000, as estimated by gel electrophoresis under denaturing conditions. The Km value for uroporphyrinogen III was 52 nM. The enzyme catalyzed the two C-2 and C-7 methylation reactions converting uroporphyrinogen III into precorrin-2. Unlike Pseudomonas denitrificans SUMT, the only SUMT characterized to date (F. Blanche, L. Debussche, D. Thibaut, J. Crouzet and B. Cameron, J. Bacteriol. 171:4222-4231, 1989), M. ivanovii SUMT did not show substrate inhibition at uroporphyrinogen III concentrations of up to 20 microM. Oligonucleotide probes from limited peptide sequence information were used to clone the corresponding gene. The encoded polypeptide showed more than 40% strict homology with P. denitrificans SUMT. The M. ivanovii SUMT structural gene is likely to be, as is P. denitrificans cobA, involved in corrinoid synthesis.  相似文献   

15.
A mechanism for the biosynthesis of uroporphyrinogen III, consistent with recent experimental results is proposed as follows: Four porphobilinogen (PBG) units form a chain by a succession of rearrangements of a methylene group derived from the unit which ultimately becomes ring D. Three PBG units (rings A, B, C) are incorporated intact. The methylene group is anchored to the enzyme during three condensations and rearrangements until cyclization of the tetrapyrrole chain produces uroporphyrinogen III.  相似文献   

16.
Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance genes because they tend to be most efficient. The Synechococcus hemL gene has been successfully employed as a selectable marker for tobacco and alfalfa genetic transformation, by using gabaculine as the selective agent. The gene conferring gabaculine resistance is a mutant form of the hemL gene from Synechococcus PCC6301, strain GR6, encoding a gabaculine insensitive form of the glutamate1-semialdehyde aminotransferase (GSA) enzyme. In the present study we compared the transformation and selection efficiency of the common selection method based on the Streptomyces hygroscopicus bar gene conferring resistance to Bialaphos®, with both the Synechococcus hemL gene and a Medicago sativa mutated GSA gene (MsGSAgr) conferring resistance to phytotoxin gabaculine. Callus derived from immature embryos of the durum wheat cultivar Varano were simultaneously co-bombarded with bar/hemL and bar/MsGSAgr genes. After gene delivery, the marker genes were individually evaluated through all the selection phases from callus regeneration to adult plant formation, and compared for their transformation and selection efficiency. The integration of the three genes in the T0 generation was confirmed by PCR analysis with specific primers for each gene and southern blot analysis. Both Synechococcus hemL and MsGSA were more efficient than bar for biolistic transformation (2.8% vs. 1.8% and 1.1% vs. 0.5%) and selection (79% vs. 43% and 87% vs. 50%). Thus, an efficient selection method for durum wheat transformation was established that obviates the use of herbicide resistance genes.  相似文献   

17.
By using the gene encoding the C-terminal part of thecd 1-type nitrite reductase ofPseudomonas stutzeri JM300 as a heterologous probe, the corresponding gene fromParacoccus denitrificans was isolated. This gene,nirS, codes for a mature protein of 63144 Da having high homology withcd 1-type nitrite reductases from other bacteria. Directly downstream fromnirS, three othernir genes were found in the ordernirECF. The organization of thenir gene cluster inPa. denitrificans is different from the organization ofnir clusters in some Pseudomonads.nirE has high homology with a S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (uro'gen III methylase). This methylase is most likely involved in the hemed 1 biosynthesis inPa. denitrificans. The third gene,nirC, codes for a small cytochromec of 9.3 kDa having high homology with cytochromec 55X ofPs. stutzeri ZoBell. The 4th gene,nirF, has no homology with other genes in the sequence databases and has no relevant motifs. Inactivation of either of these 4 genes resulted in the loss of nitrite and nitric oxide reductase activities but not of nitrous oxide reductase activity.nirS mutants lack thecd 1-type nitrite reductase whilenirE, nirC andnirF mutants produce a small amount ofcd 1-type nitrite reductase, inactive due to the absence of hemed 1. Upstream from thenirS gene the start of a gene was identified which has limited homology withnosR, a putative regulatory gene involved in nitrous oxide reduction. A potential FNR box was identified between this gene andnirS.Abbreviations SDS sodium dodecyl sulfate - NBT nitroblue tetrazolium - PAGE polyacrylamide gel electrophoresis  相似文献   

18.
Rat hepatic uroporphyrinogen III cosynthase has been isolated and purified 50-fold with a 36% yield by ammonium sulfate fractionation and sequential chromatography on DEAE-Sephacel and Sephadex G-100SF. Inhibition of uroporphyrinogen III formation with increasing porphobilinogen concentration was observed. Cosynthase was shown to be thermolabile, and a time-dependent loss of enzyme activity during reaction with uroporphyrinogen I synthase and porphobilinogen was observed. The pH optimum for the complete system (synthase and cosynthase) was pH 7.8 in 50 mm Tris-HCl or 50 mm sodium phosphate buffer. Various metals (KCl, NaCl, MgCl2, CaCl2) increased formation of Uroporphyrinogen III. Heavy metals including ZnCl2, CdCl2, and CuCl2 were shown to selectively inhibit cosynthase activity, whereas other metals (HgCl2, PbCl2) were less selective and inhibited both synthase and cosynthase at similar concentrations.  相似文献   

19.
The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther''s disease or congenital erythropoietic porphyria, an autosomal recessive inborn error of metabolism. The current study investigated the possible role of UROS (Homo sapiens [EC: 4.2.1.75; 265 aa; 1371 bp mRNA; Entrez Pubmed ref NP_000366.1, NM_000375.2]) in evolution by studying the phylogenetic relationship and divergence of this gene using computational methods. The UROS protein sequences from various taxa were retrieved from GenBank database and were compared using Clustal-W (multiple sequence alignment) with defaults and a first-pass phylogenetic tree was built using neighbor-joining method as in DELTA BLAST 2.2.27+ version. A total of 163 BLAST hits were found for the uroporphyrinogen III synthase query sequence and these hits showed putative conserved domain, HemD superfamily (as on 14th Nov 2012). We then narrowed down the search by manually deleting the proteins which were not UROS sequences and sequences belonging to phyla other than Chordata were deleted. A repeat phylogenetic analysis of 39 taxa was performed using PhyML and TreeDyn software to confirm that UROS is a highly conserved protein with approximately 85% conserved sequences in almost all chordate taxons emphasizing its importance in heme synthesis.  相似文献   

20.
Abstract

Aminolevulinic acid (ALA) was produced by recombinant Escherichia coli BL21(DE3) (pET28‐A.R‐hemA) harboring the ALA synthase gene (hemA) from Agrobacterium radiobacter zju‐0121. The effects of inducers on the ALA synthase activity and ALA productivity were evaluated. The results indicated that a low isopropyl‐β‐D‐thiogalactoside (IPTG) concentration (0.05 mmol/L) was favorable for high expression of ALA synthase, which resulted in higher ALA productivity. For metabolic engineering applications, lactose was a better substitute of IPTG for active enzyme expression. When lactose concentration was 5 mmol/L, the specific ALA synthase activity and ALA productivity reached 16.7 nmol/(min · mg of protein) and 1.15 g/L, respectively, which were about 15% and 43% higher than those induced by IPTG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号