首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction networks are complex, as are their mathematical models. Gaining a deeper understanding requires a system analysis. Important aspects are the number, location and stability of steady states. In particular, bistability has been recognised as an important feature to achieve molecular switching. This paper compares different model structures and analysis methods particularly useful for bistability analysis.

The biological applications include proteolytic cascades as, for example, encountered in the apoptotic signalling pathway or in the blood clotting system. We compare three model structures containing zero-order, inhibitor and cooperative ultrasensitive reactions, all known to achieve bistability. The combination of phase plane and bifurcation analysis provides an illustrative and comprehensive understanding of how bistability can be achieved and indicates how robust this behaviour is.

Experimentally, some so-called “inactive” components were shown to have a residual activity. This has been mostly ignored in mathematical models. Our analysis reveals that bistability is only mildly affected in the case of zero-order or inhibitor ultrasensitivity. However, the case where bistability is achieved by cooperative ultrasensitivity is severely affected by this perturbation.  相似文献   


2.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

3.
The MAPK signaling cascade is nowadays understood as a network module highly conserved across species. Its main function is to transfer a signal arriving at the plasma membrane to the cellular interior. Current understanding of ‘how’ this is achieved involves the notions of ultrasensitivity and bistability which relate to the nonlinear dynamics of the biochemical network, ignoring spatial aspects. Much less, indeed, is so far known about the propagation of the signal through the cytoplasm. In this work we formulate, starting from a Michaelis–Menten model for the MAPK cascade in Xenopus oocytes, a reaction-diffusion model of the cascade. We study this model in one space dimension. Basing ourselves on previous general results on reaction diffusion models, we particularly study for our model the conditions for signal propagation. We show that the existence of a propagating front depends sensitively on the initial and boundary conditions at the plasma membrane. Possible biological consequences of this finding are discussed.  相似文献   

4.
5.
The Briggs–Haldane standard quasi-steady state approximation and the resulting rate expressions for enzyme driven biochemical reactions provide crucial theoretical insight compared to the full set of equations describing the reactions, mainly because it reduces the number of variables and equations. When the enzyme is in excess of the substrate, a significant amount of substrate can be bound in intermediate complexes, so-called substrate sequestration. The standard quasi-steady state approximation is known to fail under such conditions, a main reason being that it neglects these intermediate complexes. Introducing total substrates, i.e., the sums of substrates and intermediate complexes, provides a similar reduction of the number of variables to consider but without neglecting the contribution from intermediate complexes. The present theoretical study illustrates the usefulness of such simplifications for the understanding of biochemical reaction schemes. We show how introducing the total substrates allows a simple analytical treatment of the relevance of significant enzyme concentrations for pseudo first-order kinetics and reconciles two proposed criteria for the validity of the pseudo first-order approximation. In addition, we show how the loss of zero-order ultrasensitivity in covalent modification cycles can be analyzed, in particular that approaches such as metabolic control analysis are immediately applicable to scenarios described by the total substrates with enzyme concentrations higher than or comparable to the substrate concentrations. A simple criterion which excludes the possibility of zero-order ultrasensitivity is presented.  相似文献   

6.
Previous studies have suggested that positive feedback loops and ultrasensitivity are prerequisites for bistability in covalent modification cascades. However, it was recently shown that bistability and hysteresis can also arise solely from multisite phosphorylation. Here we analytically demonstrate that double phosphorylation of a protein (or other covalent modification) generates bistability only if: (a) the two phosphorylation (or the two dephosphorylation) reactions are catalyzed by the same enzyme; (b) the kinetics operate at least partly in the zero-order region; and (c) the ratio of the catalytic constants of the phosphorylation and dephosphorylation steps in the first modification cycle is less than this ratio in the second cycle. We also show that multisite phosphorylation enlarges the region of kinetic parameter values in which bistability appears, but does not generate multistability. In addition, we conclude that a cascade of phosphorylation/dephosphorylation cycles generates multiple steady states in the absence of feedback or feedforward loops. Our results show that bistable behavior in covalent modification cascades relies not only on the structure and regulatory pattern of feedback/feedforward loops, but also on the kinetic characteristics of their component proteins.  相似文献   

7.
Chen C  Cui J  Zhang W  Shen P 《FEBS letters》2007,581(26):5143-5150
In this paper two competing models of the B-cell lymphoma 2 (Bcl-2) apoptotic switch were contrasted by mathematical modeling and robustness analysis. Since switch-like behaviors are required for models that attempt to explain the all-or-none decisions of apoptosis, ultrasensitivity was employed as a criterion for comparison. Our results successfully exhibit that the direct activation model operates more reliably to achieve a robust switch in cellular conditions. Moreover, by investigating the robustness of other important features of the Bcl-2 apoptotic switch (including low Bax basal activation, inhibitory role of anti-apoptotic proteins and insensitivity to small perturbations) the direct activation model was further supported. In all, we identified the direct activation model as a more plausible explanation for the Bcl-2 apoptotic switch.  相似文献   

8.
Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system’s components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme’s opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively.  相似文献   

9.
Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system’s components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme’s opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively.  相似文献   

10.
As the systems biology era progresses, theoreticians and experimentalists continue uncovering the molecular mechanisms that underlie the regulation of complex cellular phenomena, including those governing proliferation, differentiation, and death. The discovery of bistability in cellular responses and their signaling pathways has become a recurring theme, and prompted strong interest in understanding both the design and function of these networks. Modeling these systems has been crucial in assisting experimentalists to better understand how this and other types of behavior can emerge from a subset of regulators, and also to analyze and identify systems-level characteristics that would otherwise be difficult to intuit. In this review, recent advances in both theoretical and experimental work investigating the mechanistic as well as biological basis for bistability will be presented. These will include the role of positive feedback loops, the potential function of dual phosphorylation cycles, and substrate competition as a means of generating ultrasensitivity.  相似文献   

11.
12.
Modeling of signaling networks   总被引:8,自引:0,他引:8  
Biochemical networks, including those containing signaling pathways, display a wide range of regulatory properties. These include the ability to propagate information across different time scales and to function as switches and oscillators. The mechanisms underlying these complex behaviors involve many interacting components and cannot be understood by experiments alone. The development of computational models and the integration of these models with experiments provide valuable insight into these complex systems-level behaviors. Here we review current approaches to the development of computational models of biochemical networks and describe the insights gained from models that integrate experimental data, using three examples that deal with ultrasensitivity, flexible bistability and oscillatory behavior. These types of complex behavior from relatively simple networks highlight the necessity of using theoretical approaches in understanding higher order biological functions.  相似文献   

13.
Regulation of glycogenolysis in skeletal muscle is dependent on a network of interacting enzymes and effectors that determine the relative activity of the enzyme phosphorylase. That enzyme is activated by phosphorylase kinase and inactivated by protein phosphatase-1 in a cyclic process of covalent modification. We present evidence that the cyclic interconversion is subject to zero-order ultrasensitivity, and the effect is responsible for the "flash" activation of phosphorylase by Ca2+ in the presence of glycogen. The zero-order effect is observable either by varying the amounts of kinase and phosphatase or by modifying the ratio of their activities by a physiological effector, protein phosphatase inhibitor-2. The sensitivity of the system is enhanced in the presence of the phosphorylase limit dextrin of glycogen which lowers the Km of phosphorylase kinase for phosphorylase. The in vitro experimental results are examined in terms of physiological conditions in muscle, and it is shown that zero-order ultrasensitivity would be more pronounced under the highly compartmentalized conditions found in that tissue. The sensitivity of this system to effector changes is much greater than that found for allosteric enzymes. Furthermore, the sensitivity enhancement increases more rapidly than energy consumption (ATP) as the phosphorylase concentration increases. Energy effectiveness is shown to be a possible evolutionary factor in favor of the development of zero-order ultrasensitivity in compartmentalized systems.  相似文献   

14.
Our understanding of the mitochondrial or intrinsic apoptosis pathway and its role in chemotherapy resistance has increased significantly in recent years by a combination of experimental studies and mathematical modelling. This combined approach enhanced the quantitative and kinetic understanding of apoptosis signal transduction, but also provided new insights that systems-emanating functions (i.e., functions that cannot be attributed to individual network components but that are instead established by multi-component interplay) are crucial determinants of cell fate decisions. Among these features are molecular thresholds, cooperative protein functions, feedback loops and functional redundancies that provide systems robustness, and signalling topologies that allow ultrasensitivity or switch-like responses. The successful development of kinetic systems models that recapitulate biological signal transduction observed in living cells have now led to the first translational studies, which have exploited and validated such models in a clinical context. Bottom-up strategies that use pathway models in combination with higher-level modelling at the tissue, organ and whole body-level therefore carry great potential to eventually deliver a new generation of systems-based diagnostic tools that may contribute to the development of personalised and predictive medicine approaches. Here we review major achievements in the systems biology of intrinsic apoptosis signalling, discuss challenges for further model development, perspectives for higher-level integration of apoptosis models and finally discuss requirements for the development of systems medical solutions in the coming years.  相似文献   

15.
16.
Protein sequestration occurs when an active protein is sequestered by a repressor into an inactive complex. Using mathematical and computational modeling, we show how this regulatory mechanism (called “molecular titration”) can generate ultrasensitive or “all-or-none” responses that are equivalent to highly cooperative processes. The ultrasensitive nature of the input-output response is mainly determined by two parameters: the dimer dissociation constant and the repressor concentration. Because in vivo concentrations are tunable through a variety of mechanisms, molecular titration represents a flexible mechanism for generating ultrasensitivity. Using physiological parameters, we report how details of in vivo protein degradation affect the strength of the ultrasensitivity at steady state. Given that developmental systems often transduce signals into cell-fate decisions on timescales incompatible with steady state, we further examine whether molecular titration can produce ultrasensitive responses within physiologically relevant time intervals. Using Drosophila somatic sex determination as a developmental paradigm, we demonstrate that molecular titration can generate ultrasensitivity on timescales compatible with most cell-fate decisions. Gene duplication followed by loss-of-function mutations can create dominant negatives that titrate and compete with the original protein. Dominant negatives are abundant in gene regulatory circuits, and our results suggest that molecular titration might be generating an ultrasensitive response in these networks.  相似文献   

17.
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.  相似文献   

18.
Given the ubiquitous nature of signal-induced Ca2+ oscillations, the question arises as to how cellular responses are affected by repetitive Ca2+ spikes. Among these responses, we focus on those involving protein phosphorylation. We examine, by numerical simulations of a theoretical model, the situation where a protein is phosphorylated by a Ca(2+)-activated kinase and dephosphorylated by a phosphatase. This reversible phosphorylation system is coupled to a mechanism generating cytosolic Ca2+ oscillations; for definiteness, this oscillatory mechanism is based on the process of Ca(2+)-induced Ca2+ release. The analysis shows that the average fraction of phosphorylated protein increases with the frequency of repetitive Ca2+ spikes; the latter frequency generally rises with the extent of external stimulation. Protein phosphorylation therefore provides a mechanism for the encoding of the external stimulation in terms of the frequency of signal-induced Ca2+ oscillations. Such a frequency encoding requires precise kinetic conditions on the Michaelis-Menten constants of the kinase and phosphatase, their maximal rates, and the degree of cooperativity in kinase activation by Ca2+. In particular, the most efficient encoding of Ca2+ oscillations based on protein phosphorylation occurs in conditions of zero-order ultrasensitivity, when the kinase and phosphatase are saturated by their protein substrate. The kinetic analysis uncovers a wide variety of temporal patterns of phosphorylation that could be driven by signal-induced Ca2+ oscillations.  相似文献   

19.
The intrinsic, or mitochondrial, pathway of caspase activation is essential for apoptosis induction by various stimuli including cytotoxic stress. It depends on the cellular context, whether cytochrome c released from mitochondria induces caspase activation gradually or in an all-or-none fashion, and whether caspase activation irreversibly commits cells to apoptosis. By analyzing a quantitative kinetic model, we show that inhibition of caspase-3 (Casp3) and Casp9 by inhibitors of apoptosis (IAPs) results in an implicit positive feedback, since cleaved Casp3 augments its own activation by sequestering IAPs away from Casp9. We demonstrate that this positive feedback brings about bistability (i.e., all-or-none behaviour), and that it cooperates with Casp3-mediated feedback cleavage of Casp9 to generate irreversibility in caspase activation. Our calculations also unravel how cell-specific protein expression brings about the observed qualitative differences in caspase activation (gradual versus all-or-none and reversible versus irreversible). Finally, known regulators of the pathway are shown to efficiently shift the apoptotic threshold stimulus, suggesting that the bistable caspase cascade computes multiple inputs into an all-or-none caspase output. As cellular inhibitory proteins (e.g., IAPs) frequently inhibit consecutive intermediates in cellular signaling cascades (e.g., Casp3 and Casp9), the feedback mechanism described in this paper is likely to be a widespread principle on how cells achieve ultrasensitivity, bistability, and irreversibility.  相似文献   

20.
We propose a mathematical model for mitochondria-dependent apoptosis, in which kinetic cooperativity in formation of the apoptosome is a key element ensuring bistability. We examine the role of Bax and Bcl-2 synthesis and degradation rates, as well as the number of mitochondrial permeability transition pores (MPTPs), on the cell response to apoptotic stimuli. Our analysis suggests that cooperative apoptosome formation is a mechanism for inducing bistability, much more robust than that induced by other mechanisms, such as inhibition of caspase-3 by the inhibitor of apoptosis (IAP). Simulations predict a pathological state in which cells will exhibit a monostable cell survival if Bax degradation rate is above a threshold value, or if Bax expression rate is below a threshold value. Otherwise, cell death or survival occur depending on initial caspase-3 levels. We show that high expression rates of Bcl-2 can counteract the effects of Bax. Our simulations also demonstrate a monostable (pathological) apoptotic response if the number of MPTPs exceeds a threshold value. This study supports our contention, based on mathematical modeling, that cooperativity in apoptosome formation is critically important for determining the healthy responses to apoptotic stimuli, and helps define the roles of Bax, Bcl-2, and MPTP vis-à-vis apoptosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号