首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Aquatic Botany》2007,87(4):262-274
A high degree of resistance against nutrient enrichment has previously been demonstrated for macroalgal-dominated rocky shore communities in the presence of moderate to large amounts of macroinvertebrate grazers. To experimentally examine, under controlled conditions, the possible roles for this resistance of two other factors, i.e. disturbance (presence/absence of the macroalgal canopy itself) and wave action, the canopy algae and associated algal and animal assemblages were removed by scraping from approximately one third of the area of eight littoral mesocosms, subjected to two different wave action regimes. After this, excessive nutrients were added to four mesocosms with the factor nutrients fully crossed with the factor wave action with two replicate mesocosm basins of each nutrient/wave treatment combination. Disturbance was added to the design as a within-basin factor thus making up a split-plot experiment. The abundance of grazers was allowed to vary freely and under the influence of the treatments. After 11 summer weeks, there were significant differences in community structure between nutrient enrichment levels for both algal and animal assemblages when examined by multivariate statistical techniques. Univariate analyses confirmed a significantly stimulated colonisation by green algae, mainly Ulva lactuca, in both disturbed (scraped) and undisturbed areas of nutrient-enriched mesocosms. In un-enriched mesocosms, the green algae were absent from undisturbed areas and rare in disturbed areas, where mainly brown Ectocarpus spp. and red algae had settled. Among the macrofauna, the total abundance of grazers was stimulated in nutrient-enriched mesocosms with individuals of the amphipod genus Gammarus and the isopod genus Jaera being especially numerous. With regard to wave action, no significant differences occurred in community structure, although there were indications of significant nutrient × wave effects for both the amount of exported red algae and the amount of accumulated brown algae. The study shows that eutrophication-related community shifts on rocky shores may occur very rapidly, regardless of the level of wave-energetic stress and the abundance of grazers, if the nutrient concentrations are high and the colonisation and growth of opportunistic algae are facilitated by disturbance such as (naturally or anthropogenically driven) canopy gap forming processes.  相似文献   

2.
Coastal eutrophication may alter the dominance patterns of marine macroalgae, with potential consequences for the associated fauna and the entire ecosystem. Benthic macroalgae and animals in control and nutrient-enriched mesocosms were monitored to investigate eutrophication-induced changes in rocky shore communities. During a 3-year project, nutrient addition had only minor effects on the community structure, such as increased cover and biomass of green Ulva spp. and increased abundance of certain animal species at high nutrient levels. This study is a 4-year extension of a previously reported project, with 2 extra years of effect studies (altogether 5 years) and a subsequent 2 years for recovery. During the 4th year of nutrient enrichment, the cover of Fucus vesiculosus and Fucus serratus started to decline. In the 5th year, these canopy species crashed and there was an evident take-over by green algae at high nutrient addition levels. The previously observed abundance stimulation for fauna disappeared later in the time series, probably due to the loss of the macroalgal canopy. After less than 2 years on regular seawater, the algal and animal communities had returned to within the range of normal variability. The results indicate that established rocky shore communities of perennial algae with associated fauna are able to persist for several years, even at very high nutrient levels, but that community shifts may suddenly occur if eutrophication continues. They also indicate that rocky shore communities have the ability to return rapidly to natural undisturbed conditions after the termination of nutrient enhancement.  相似文献   

3.
Biotic indices for algae, macroinvertebrates, and fish assemblages can be effective for monitoring stream enrichment, but little is known regarding the value of the three assemblages for detecting perturbance as a consequence of low-level nutrient enrichment. In the summer of 2006, we collected nutrient and biotic samples from 30 wadeable Ozark streams that spanned a nutrient-concentration gradient from reference to moderately enriched conditions. Seventy-three algal metrics, 62 macroinvertebrate metrics, and 60 fish metrics were evaluated for each of the three biotic indices. After a group of candidate metrics had been identified with multivariate analysis, correlation procedures and scatter plots were used to identify the four metrics having strongest relations to a nutrient index calculated from log transformed and normalized total nitrogen and total phosphorus concentrations. The four metrics selected for each of the three biotic indices were: algae—the relative abundance of most tolerant diatoms, the combined relative abundance of three species of Cymbella, mesosaprobic algae percent taxa richness, and the relative abundance of diatoms that are obligate nitrogen heterotrophs; macroinvertebrate—the relative abundance of intolerant organisms, Baetidae relative abundance, moderately tolerant taxa richness, and insect biomass; fish—herbivore and detritivore taxa richness, pool species relative abundance, fish catch per unit effort, and black bass (Micropterus spp.) relative abundance.All three biotic indices were negatively correlated to nutrient concentrations but the algal index had a higher correlation (rho = ?0.89) than did the macroinvertebrate and fish indices (rho = ?0.63 and ?0.58, respectively). Biotic index scores were lowest and nutrient concentrations were highest for streams with basins having the highest poultry and cattle production. Because of the availability of litter for fertilizer and associated increases in grass and hay production, cattle feeding capacity increases with poultry production. Studies are needed that address the synergistic effect of poultry and cattle production on Ozark streams in high production areas before ecological risks can be adequately addressed.  相似文献   

4.
The recovery of historic community assemblages on reefs is a primary objective for the management of marine ecosystems. Working under the overall hypothesis that, as fishing pressure increases, the abundance in upper trophic levels decreases followed by intermediate levels, we develop an index that characterizes the comparative health of rocky reefs. Using underwater visual transects to sample rocky reefs in the Gulf of California, Mexico, we sampled 147 reefs across 1200 km to test this reef health index (IRH). Five-indicators described 88% of the variation among the reefs along this fishing-intensity gradient: the biomass of piscivores and carnivores were positively associated with reef health; while the relative abundances of zooplanktivores, sea stars, and sea urchins, were negatively correlated with degraded reefs health. The average size of commercial macro-invertebrates and the absolute fish biomass increased significantly with increasing values of the IRH. Higher total fish biomass was found on reefs with complex geomorphology compared to reefs with simple geomorphology (r2 = 0.14, F = 44.05, P < 0.0001) and the trophic biomass pyramid also changed, which supports the evidence of the inversion of biomass pyramids along the gradient of reefs’ health. Our findings introduce a novel approach to classify the health of rocky reefs under different fishing regimes and therefore resultant community structures. Additionally, our IRH provides insight regarding the potential gains in total fish biomass that may result from the conservation and protection of reefs with more complex geomorphology.  相似文献   

5.
Blooms of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii occur in tropical and subtropical lakes during spring-summer but the mechanisms behind bloom formation are unclear. This study tests the hypothesis that C. raciborskii accumulations in freshwater systems are facilitated by selective copepod grazing. Prey selection was examined in a series of experiments with C. raciborskii and the green alga, Chlamydomonas reinhardtii, as well as within natural phytoplankton assemblages. Clearance rates of the copepod Boeckella sp. on a C. raciborskii diet were 2–4 times lower than that of a common cladoceran Ceriodaphnia sp. when both grazers had prey choice. More C. raciborskii was cleared by Boeckella sp. when in mixed natural phytoplankton assemblages, but the clearance rate declined when nutrient replete C. reinhardtii was added, demonstrating that when alternate “high quality” algae were present, so did C. raciborskii consumption. The clearance rates of Boeckella sp. on two toxic C. raciborskii strains were significantly lower than on a non-toxic strain, and on C. raciborskii with low cellular P content. When we tested the grazing preference of a copepod dominated mixed zooplankton community on C. raciborskii during the early bloom period, clearance rates were relatively low (0.05–0.20 ml individual−1 h−1), and decreased significantly as the proportion of C. raciborskii increased above 5%. These results suggest that C. raciborskii persistence could be promoted by copepods preferentially grazing on other algae, with significant loss of top-down control as C. raciborskii abundance increases.  相似文献   

6.
《Aquatic Botany》2007,86(2):132-138
Turbinara ornata (Turner) J. Agardh, is a common brown alga, which occurs on tropical shores worldwide. We studied the effects of wave action and seasonal variation on T. ornata populations at Koh Pling, Sirinart Marine National Park, Thailand. Density, length of thallus, length of blade, number of blades, number of reproductive organs, and dry weights were investigated. The algae were collected bimonthly during August 2003–May 2004, at three different areas of wave exposure: sheltered, semi-exposed, and exposed. There were variations in all factors at sites and seasons (P < 0.05). We found that T. ornata populations were denser on the semi-exposed shore and their biological characteristics reached their peaks during October 2003. The highest density of T. ornata was 27 ± 10 fronds/m2 (mean ± S.E.). While the average frond length, for example, was 24 ± 1.5 cm, 4 times greater than the minimum; and the number of blades on the thallus were 329 ± 47 blades, 15 times greater than the minimum. Surprisingly, the population disappeared at the beginning of May 2004, and returned in July 2004. In this work, we attempt to explain the differences in various characteristics of T. ornata in relation to the degree of wave exposure, nutrient concentration and other physical factors. We also discuss how our results may provide some insight into the current rapid expansion of T. ornata populations.  相似文献   

7.
The presence of Ulva microscopic propagules may play an important role in the rapid development of high-biomass blooms of green algae in the Yellow Sea. Six cruises were conducted, to determine the abundance and distribution of Ulva microscopic propagules associated with a green tide that developed in the southern coastal waters of the Yellow Sea from April to August, 2012. Results indicated that Ulva microscopic propagules were widespread in these waters, with the highest density being up to 4800 ind. L−1, prior to the appearance of the green tide in April. High densities were also widely distributed along the coast during May and June, after the appearance of the floating green tide. The quantity of Ulva microscopic propagules significantly decreased when the floating green tide declined in July, reaching densities of up to 162 ind. L−1, following the disappearance of the floating green tide in August. Quantitative studies on the distribution patterns of Ulva microscopic propagules along the southern coast of the Yellow Sea indicated a significant correlation between density and salinity, turbidity and nutrient concentrations. Temporal and geographical distribution patterns of Ulva microscopic propagules were also significantly affected by the presence of a large biomass of attached, or floating, Ulva species algae.  相似文献   

8.
Human influence on the landscape has caused nutrients in surface waters to increase to the point where their presence has substantially altered biological communities. Because this is a nationally recognized problem, the United States Environmental Protection Agency (USEPA) tasked each state, tribe, and territory to adopt numeric nutrient criteria. Here we integrate the concept of ecological thresholds with the derivation of effects-based numeric nutrient criteria. Acceptable levels of risk exceeding predefined biocriteria were determined using conditional probability and nonparametric changepoint analysis. We show how certain community metrics exhibit threshold responses to nutrients. Using these thresholds, we suggest nutrient values protective of aquatic life and characterize community composition. Nutrient criteria were suggested for two aggregations of USEPA's nutrient ecoregions in New York State an upland pristine forested region (Ecoregions VIII and XI) and a nutrient-enriched lowland region (Ecoregions VII and XIV). Of 11 biological community metrics evaluated, 5 had a strong response to nutrients (NBI-P, NBI-N, HBI, TRI, and DMA). Maximum probabilities of exceeding the biological impairment thresholds established for these metrics ranged from 81% to 100%. Changepoint analysis conducted on probability outcomes of these metrics resulted in nutrient thresholds at or above USEPA nutrient guidance values, depending on ecoregion and nutrient variable (Ecoregion VIII/XI: 15 μg/L TP, 472 μg/L TN, 150 μg/L NO3-N, Ecoregion VII/XIV: 17 μg/L TP, 1133 μg/L TN, 356 μg/L NO3-N). Results of taxonomic similarity percentages (SIMPER) and species contributions indicate that several orders of macroinvertebrates and diatoms exhibit significant shifts in their percent of contributions to sample similarity in response to changes in nutrient concentrations.  相似文献   

9.
On marine rocky shores, macroalgal herbivory is often intense, such that the cascading effects of fish predation may contribute to the control of algal communities. To estimate the magnitudes of top-down and bottom-up control on a macroalgal community, we manipulated the access of carnivorous fish to macroalgal colonization substrates, as well as nutrient availability, at two sub-littoral depths. There were three levels of fish manipulation: natural fish community, no fish and the enclosure of one common species, the perch, Perca fluviatilis. We found a clear cascade effect of fish predation on both the total density and several individual species of macroalgae, which was more pronounced in deep than shallow water. The density of the dominant grazers, i.e. snails, increased in nutrient-enriched conditions; perch were inefficient in controlling herbivores, and had therefore no cascading effect on algal densities under such conditions. Although nutrients enhanced the growth of opportunistic algae, herbivores, in the absence of fish, inhibited this response. While algal diversity was higher in shallow than in deep water, the enrichment effect was opposite at the two depths with lowered diversity in the shallows and increased at depth. Our results indicate that fish predation is an efficient regulator of meso-herbivores and that its effect thereby cascades onto the producer trophic level such that both perennial and opportunistic algae benefit from the presence of fish. This cascade effect is probably stronger at depth where predation efficiency is less disturbed by wave motion.  相似文献   

10.
Studies of epiphytic dinoflagellates in Peter the Great Bay, Sea of Japan in 2008–2011 revealed the presence of 13 species. Five of the species are known as potentially toxic: Amphidinium carterae, A. operculatum, Ostreopsis cf. ovata, O. cf. siamensis and Prorocentrum lima. The maximum species richness and abundance of epiphytic dinoflagellates were observed in autumn (from September to October). Ostreopsis spp. were most widely distributed and predominated, amounting to 99% of the total density of dinoflagellates. Multi-year seasonal dynamics of Ostreopsis spp. in Peter the Great Bay showed that these cells appear as epiphyton in August after maximum warming of surface waters (22–24 °С) and disappear in early November, when the water temperature decreases below 7 °С. Ostreopsis spp. proliferation occurred in September, when the water temperature was 17.2–21.0 °C. The highest densities of Ostreopsis spp. were recorded on September 9, 2010 on the rhodophyte Neorhodomela aculeata – 230 × 103 cells g−1 DW or 52 × 103 cells g−1 FW. The spatial distribution of epiphytic dinoflagellates was investigated in the near-shore areas of Peter the Great Bay during the second half of September 2010 to evaluate the role of hydrodynamic conditions. Epiphytic dinoflagellates were not found in sheltered sites having weak mixing hydrodynamics. However, the abundances of Ostreopsis spp. were significantly higher at sites having moderate turbulence compared to biotopes experiencing strong wave action. Densities of Ostreopsis spp. were not significantly different on macrophytes with branched thallus of all taxonomic divisions. However, the average cell densities of Ostreopsis spp. on green algae with branched thallus were significantly higher than on green algae having laminar thallus.  相似文献   

11.
Seagrass leaves are often densely covered by epiphytic algae which can suppress seagrass productivity and has been implicated in declines of seagrass meadows worldwide. The net effect of epiphytes on seagrass growth and morphology depends on the independent and interactive effects of a variety of factors, including nutrient availability and the intensity of grazing on epiphytes. Here I report the results of a mesocosm experiment designed to test the effects of nutrient addition and within-functional group variation (grazer species composition and the source population of seagrass) on the strength of the interactions among grazers, epiphytes, and turtle grass (Thalassia testudinum). Turtle grass ramets from two sites in the northern Gulf of Mexico were cleared of epiphytes and transplanted into common-garden mesocosms. Replicate ramets were grown in a split-split plot design with two levels of dissolved nutrients and four different grazer species combinations (Tozeuma carolinense alone, Pagurus maclaughlinae alone, both species together, and no grazers present). As expected, grazers had a significant negative effect on epiphyte biomass/leaf area and a significant positive effect on turtle grass growth in the mesocosms. The two species were more similar in their direct effects on epiphyte biomass than in their indirect effects on turtle grass growth; this may reflect differences in epiphyte community composition under different grazer treatments. The effect of nutrient addition on turtle grass growth depended critically on the intensity of grazing: in the presence of grazers, turtle grass tended to produce a greater biomass of new leaf tissue in the tanks with nutrients added than in the control tanks. However, when grazers were absent, the direction of the effect was reversed, and plants with nutrients added grew less than the control plants. The two source populations of turtle grass differed significantly in epiphyte biomass/leaf area accrued in the mesocosms as well as in the strength of the effect of grazers on turtle grass growth. This suggests that population differentiation in seagrass interactions with epiphytes, as well as spatial and temporal variation in resources and grazer community composition, can greatly effect the role of epiphytes in limiting seagrass productivity.  相似文献   

12.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

13.
Stressor-response models offer guidance for concentration-based nutrient criteria in lakes under human intervention. Diatom-based statistics from biological responses were incorporated to derive taxon-specific and community-level change points (thresholds) of phosphorous and nitrogen in 77 Yangtze floodplain lakes. Diatom metrics relating with conductivity were adopted as response variables, since conductivity explained the maximum variation (38.1%) in diatom assemblages via Bootstrapped regression trees. Nonparametric change-point analysis and Threshold Indicator Taxa ANalysis showed threshold responses of diatom community structure at 0.05–0.08 mg TP/L in connected lakes and 0.02–0.04 mg TP/L in isolated lakes. Distinct community change points of sensitive diatoms occurred at 0.96–1.63 mg TN/L in connected lakes and 0.52–0.63 mg TN/L in isolated lakes. Diatom community structures of tolerant taxa were substantially altered beyond 0.22–0.23 mg/L in connected lakes and 0.52–0.69 mg NOx/L in isolated lakes. Hydrological river-lake connectivity differed significantly in ecological nutrient criteria with more TN/TP criteria and less NOx criteria in connected lakes. Given the ecological significance and biological integrity, diatom-based statistics can provide more reliable change points (thresholds) for nutrient criteria than Chl a-nutrient relationships.  相似文献   

14.
15.
We investigated long-term trends in brown macroalgal assemblages inhabiting shallow subtidal rocky bottoms under the influence of thermal effluent discharge from the Brazilian nuclear power plant (BNPP). Three operational periods based on the units of the BNPP were analysed: T0 = pre-operational, between the years 1980 and 1983; T1 = operational period of unit 1, between 1988 and 1999; and T2 = operational period of units 1 and 2, between 2005 and 2012. Using generalized linear mixed models (GLMMs), we found significant declines in the numbers of genera and species over time. More than half of the species of brown macroalgae disappeared during T2. In addition, the numbers of macroalgal genera and species were inversely related to the local surface seawater temperatures. Multivariate analyses revealed a clear separation between the years of T2 and those of T0, indicating long-term changes in the community assemblages. Among the most common species in the area, the frequencies of Canistrocarpus cervicornis, Dictyopteris delicatula, Hincksia mitchelliae, Sargassum spp. and Sphacelaria tribuloides decreased during T2, while Padina gymnospora maintained rather high yearly frequencies during T2 (>40%). Our data suggest that seawater temperatures consistently higher than 30 °C together with peaks higher than 35 °C may have triggered the decline in the brown algae on rocky bottoms under the influence of the BNPP discharge. These results from southern Brazil are consistent with studies from other locations that ascribe changes in seaweed diversity to increasing seawater temperatures, highlighting the sensitivity of brown macroalgae to thermal stress and demonstrating their effectiveness as an ecological indicator for monitoring the effects of nuclear power plant effluents on coastal environments.  相似文献   

16.
Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta‐analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy‐forming algae and/or their replacement by mat‐forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy‐forming algae. Conversely, the growth or survival of mat‐forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy‐forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat‐forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat‐forming algae, particularly in enclosed bays or estuaries because of the higher prevalence of synergistic interactions between nutrient enrichment with other local and global stressors, and as such it should be prioritized.  相似文献   

17.
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

18.
We performed a mesocosms experiment using a vertical-flow wetland system to treat liquid sludge in the Mediterranean region. Three common helophyte species, common reed (Phragmites australis Cav.), broadleaf cattail (Typha latifolia L.), and yellow flag (Iris pseudacorus L.), were planted as monoculture and irrigated with a liquid sewage sludge from a food industry, characterised by very high organic concentrations (COD > 8000 mg/L). We studied the benefits of plants by comparing unplanted to planted mesocosms. Results showed the high performance of such vertical-flow wetland systems. Removal efficiency was more than 98% for total suspended solids (TSS) and chemical oxygen demand (COD), and more than 87% for total Kjeldahl nitrogen (TKN). The main removal process was physical filtration by the substrate due to the high proportion of particulate elements in the sludge. Planted mesocosms were more efficient than those unplanted, confirming the positive role of the plants. Mesocosms planted with Phragmites or Typha showed better performances in TKN removal than those planted with Iris. Only in mesocosms planted with Phragmites was there no outflow in summer due to high evapotranspiration.  相似文献   

19.
The separate contributions of different vectors to net seed dispersal curves of diplochorous systems have rarely been characterised. In Australia, myrmecochory is a common seed dispersal syndrome and in the majority of such systems, seeds are initially dispersed ballistically. We measured ballistic and myrmecochorous seed dispersal distances in relation to canopies of Adriana quadripartita (Euphorbiaceae) and used a simulation model to estimate the net dispersal curve. We also compared seed removal rates and ant abundances under, and outside, plant canopies to examine how foraging patterns by ants may affect net dispersal.Overall ant abundance did not show a significant numerical response to seedfall; however, the abundance of the main seed dispersing ant, Rhytidoponera ‘metallica’ did. Despite this, seed removal rates did not differ significantly between canopy and open locations. Rhytidoponera ‘metallica’ account for 93% of observed seed dispersal events. On average, the ants dispersed seeds 1.54 m and in doing so, moved seed a mean radial distance of 0.76 m away from canopy edges. This contribution to net dispersal distance by ants is considerable since ballistic dispersal moved seeds a median distance of 7.5 cm. Our simulation model indicated that the combination of ballistic and ant seed dispersal is expected to result in seeds being transported a median net radial dispersal distance of 1.05 m from the canopy edge.Thus in this system, an important function of diplochory may simply be to move a higher proportion of seeds from under the canopy of parent plants than is possible by ballistic dispersal alone. This ‘dispersal-for-distance’ may result in reduced parent–offspring competition or may increase the probability that seeds reach rare safe sites for germination and recruitment.  相似文献   

20.
To elucidate the effects of grazing intensity and grazing time on plant diversity and community structure, as well as the successional differentiation in an alpine meadow, a controlled grazing trial, with six grazing intensities on an alpine meadow was conducted in the eastern Qilian Mountain region for four years. Using species accumulation curves, RDA ordination and variance decomposition, we analyzed the changes in proportion of dominant species, richness, abundance, as well as the life forms of plant communities under grazing disturbance. Both the grazing intensity and grazing time had a significant effect on these dominant species, richness, abundance, as well as the life forms in the plant community (P < 0.01). More detailed results showed that: (1) The richness and abundance of plant species were highest in the light grazing plot, and these increased as time passed. In the heavy grazing plot, the abundance of plant species decreased as time passed, but the richness of these species did not change significantly. (2) The abundance of Gramineae and Umbelliferae were negatively and significantly correlated with the duration of grazing treatments, whereas Plantaginaceae and Geraniaceae were positively and significantly correlated with the grazing intensity. Over time, the abundance of bunch-type plants decreased and other life forms of plants have increased. With the increase in grazing intensity, the plants' abundance with the rosette type did not change, but other life forms of plants decreased. The results of variance decomposition indicated that grazing disturbance has had greater effects on life forms and plant populations, followed by the changes in the dominant species and their abundance, with lesser effects on the richness of the species. Grazing intensity had a greater effect than the duration of the grazing treatment had. The results of PCA showed that the climax community in both the lowest and the highest grazing intensity plots had changed over time. In the sample plots with light grazing intensity, the plant community changed to an Elymus nutans + Poa crymophila community, but later changed to a Melilotoides ruthenicus + Kobresia humilis community under heavy grazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号