首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Qi J  Ding Y  Zhu Y  Wu Y 《PloS one》2011,6(8):e22228
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.  相似文献   

4.
Pyrrolidine dithiocarbamate (PDTC) is a thiol-containing compound that can act under varying conditions as an anti-oxidant or pro-oxidant. Utilizing microarrays, we determined the effect of PDTC +/- ionizing radiation (IR) on the expression of heat shock protein (HSP) genes in isolated B6/129 wild-type (WT) and p53-/- spleen cells. Extremely significant microarrays demonstrated that PDTC, but not IR, markedly up-regulated the expression of the majority of detectable HSP genes in WT and many to a significantly greater degree in p53-/- deficient cells. Determination of the glutathione/glutathione disulfide ratio indicated that PDTC was acting as a pro-oxidant under these conditions. From these data we conclude that the clinical use of "antioxidants" with radiotherapy or chemotherapy must be very carefully based on knowledge of the p53 status of their intended normal and tumor target cells.  相似文献   

5.
Glioma is a common brain malignancy for which new drug development is urgently needed because of radiotherapy and drug resistance. Recent studies have demonstrated that artemisinin (ARS) compounds can display antiglioma activity, but the mechanisms are poorly understood. Using cell lines and mouse models, we investigated the effects of the most soluble ARS analogue artesunate (ART) on glioma cell growth, migration, distant seeding and senescence and elucidated the underlying mechanisms. Artemisinin effectively inhibited glioma cell growth, migration and distant seeding. Further investigation of the mechanisms showed that ART can influence glioma cell metabolism by affecting the nuclear localization of SREBP2 (sterol regulatory element‐binding protein 2) and the expression of its target gene HMGCR (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase), the rate‐limiting enzyme of the mevalonate (MVA) pathway. Moreover, ART affected the interaction between SREBP2 and P53 and restored the expression of P21 in cells expressing wild‐type P53, thus playing a key role in cell senescence induction. In conclusion, our study demonstrated the new therapeutic potential of ART in glioma cells and showed the novel anticancer mechanisms of ARS compounds of regulating MVA metabolism and cell senescence.  相似文献   

6.
TAp73是P53家族的一员,能够调节肿瘤的生成、侵袭和转移。但是,TAp73调节肿瘤血管生成的作用备受争议。本研究将外源TAp73转染至P53基因表达状态不同的两株肺腺癌细胞系H1299(P53-null)和A549(wt P53)中,观察TAp73对肿瘤血管生成的作用并探讨与P53基因的关系。首先,使用RT-PCR和Western印迹验证转染效率。细胞划痕实验表明,TAp73在A549细胞中促进细胞迁移,而在H1299细胞中抑制细胞迁移。体外HUVEC血管形成结果表明,TAp73在A549细胞中促进细胞血管形成,而在H1299细胞中抑制细胞血管形成。同时,血管生成抑制蛋白1(VASH1)的表达水平,也分别升高或降低。 本文研究结果表明,TAp73对肺腺癌细胞血管生成的作用依赖于P53基因的状态:在野生型P53基因存在时,TAp73促进血管生成,而在缺失P53基因的情况下,TAp73抑制血管生成。本研究对于TAp73作为肿瘤的潜在治疗靶点具有重要意义。  相似文献   

7.
Qi JP  Shao SH  Li DD  Zhou GP 《Amino acids》2007,33(1):75-83
Summary. P53 controls the cell cycle arrest and cell apoptosis through interaction with the downstream genes and their signal pathways. To stimulate the investigation into the complicated responses of p53 under the circumstance of ion radiation (IR) in the cellular level, a dynamic model for the p53 stress response networks is proposed. The model can be successfully used to simulate the dynamic processes of generating the double-strand breaks (DSBs) and their repairing, ataxia telangiectasia mutated (ATM) activation, as well as the oscillations occurring in the p53-MDM2 feedback loop.  相似文献   

8.
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).  相似文献   

9.
Adrenocortical carcinoma (ACC) is a very rare endocrine tumour, with variable prognosis, depending on tumour stage and time of diagnosis. However, it is generally fatal, with an overall survival of 5 years from detection. Radiotherapy usefulness for ACC treatment has been widely debated and seems to be dependent on molecular alterations, which in turn lead to increased radio-resistance. Many studies have shown that p53 loss is an important risk factor for malignant adrenocortical tumour onset and it has been reported that somatic mutations in TP53 gene occur in 27 to 70% of adult sporadic ACCs. In this study, we investigated the role of somatic mutations of the TP53 gene in response to ionizing radiation (IR). We studied the status of p53 in two adrenocortical cell lines, H295R and SW-13, harbouring non-functioning forms of this protein, owing to the lack of exons 8 and 9 and a point mutation in exon 6, respectively. Moreover, these cell lines show high levels of p-Akt and IGF2, especially H295R. We noticed that restoration of p53 activity led to inhibition of growth after transient transfection of cells with wild type p53. Evaluation of their response to IR in terms of cell proliferation and viability was determined by means of cell count and TUNEL assay.wtp53 over-expression also increased cell death by apoptosis following radiation in both cell lines. Moreover, RT-PCR and Western blotting analysis of some p53 target genes, such as BCL2, IGF2 and Akt demonstrated that p53 activation following IR led to a decrease in IGF2 expression. This was associated with a reduction in the active form of Akt. Taken together, these results highlight the role of p53 in response to radiation of ACC cell lines, suggesting its importance as a predictive factor for radiotherapy in malignant adrenocortical tumours cases.  相似文献   

10.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

11.
12.
Wang M  Gu C  Qi T  Tang W  Wang L  Wang S  Zeng X 《Journal of biochemistry》2007,142(5):613-620
  相似文献   

13.
Exposure of a lung epithelial cell line to ionizing radiation (IR) arrests cell cycle progression through 48 h post-exposure. Coincidentally, IR differentially activates expression of the cell cycle inhibitor, p21/WAF1, and the DNA replication protein, proliferating cell nuclear antigen (PCNA). p21/WAF1 mRNA levels remain elevated through 48 h post-exposure to IR, while PCNA mRNA levels increase transiently at early times. Since p21/WAF1 inhibits DNA replication by directly binding PCNA, the relative levels of the two proteins can determine cell cycle progression. The PCNA p53-binding site displayed reduced p53 binding affinity in vitro relative to the distal p21/WAF1 p53-binding site. Substitution of the p21/WAF1 site for the resident p53-binding site in the PCNA promoter altered the responses to increasing amounts of p53 or IR in transient expression assays. The p21/WAF1 p53-binding site sustained activation of the chimeric PCNA promoter under conditions (high p53 levels or high dose IR) that the PCNA p53-binding site did not. Binding site-specific regulation by wild-type p53 was not observed with mutant p53 harboring a serine to alanine change at amino acid 46. Limited activation of the PCNA promoter by p53 and its modified forms would restrict the amount of PCNA made available for DNA repair.  相似文献   

14.
The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.  相似文献   

15.
Irradiation (IR) can be used to treat cancer by inducing complex and irreparable DNA damage in the cancer cells, which may lead to their apoptotic death. However, little is known about the molecular mechanism of this DNA damage. Here, the non-small-cell lung cancer cell line A549 was treated with either X-ray or carbon ion combined with bleomycin (BLM). The cell survival rate, frequency of double-strand breaks (DSBs), dynamic changes in γH2AX, and p53 binding protein 1 (53BP1), and protein expression of Ku70, Rad51, and XRCC1 were determined by the clone formation assay, agarose gel electrophoresis, immunofluorescence, and western blot analysis. The results showed that the most obvious complex DSBs occurred in the carbon IR + BLM group. The number of γH2AX and 53BP1 foci in the 0.5 hr X-ray IR + BLM group was the highest (p < 0.001) among all the groups. γH2AX foci were detected in the nucleus at 0.5, 1, 2, and 4 hr, but were distributed throughout the cell at 6 hr after IR in the carbon ion IR + BLM group. The expression of Ku70 increased and XRCC1 decreased at 2 and 6 hr after IR. Our data indicate that a DNA damage frequency of 13.4/Mbp is caused by clustered DNA damage and further show a correlation between γH2AX, 53BP1, and XRCC1 levels and the extent of DNA damage. The results of this study provide insights into DNA damage recognition and a rationale for the clinical use of radiotherapy.  相似文献   

16.
Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by neuronal degeneration accompanied by ataxia, telangiectasias, acute cancer predisposition, and sensitivity to ionizing radiation (IR). Cells from individuals with AT show unusual sensitivity to IR, severely attenuated cell cycle checkpoint functions, and poor p53 induction in response to IR compared with normal human fibroblasts (NHFs). The gene mutated in AT (ATM) has been cloned, and its product, pATM, has IR-inducible kinase activity. The AT phenotype has been suggested to be a consequence, at least in part, of an inability to respond appropriately to oxidative damage. To test this hypothesis, we examined the ability of NHFs and AT dermal fibroblasts to respond to t-butyl hydroperoxide and IR treatment. AT fibroblasts exhibit, in comparison to NHFs, increased sensitivity to the toxicity of t-butyl hydroperoxide, as measured by colony-forming efficiency assays. Unlike NHFs, AT fibroblasts fail to show G(1) and G(2) phase checkpoint functions or to induce p53 in response to t-butyl hydroperoxide. Treatment of NHFs with t-butyl hydroperoxide activates pATM-associated kinase activity. Our results indicate that pATM is involved in responding to certain aspects of oxidative damage and in signaling this information to downstream effectors of the cell cycle checkpoint functions. Our data further suggest that some of the pathologies seen in AT could arise as a consequence of an inability to respond normally to oxidative damage.  相似文献   

17.
18.
Cell cycle checkpoints can enhance cell survival and limit mutagenic events following DNA damage. Primary murine fibroblasts became deficient in a G1 checkpoint activated by ionizing radiation (IR) when both wild-type p53 alleles were disrupted. In addition, cells from patients with the radiosensitive, cancer-prone disease ataxia-telangiectasia (AT) lacked the IR-induced increase in p53 protein levels seen in normal cells. Finally, IR induction of the human GADD45 gene, an induction that is also defective in AT cells, was dependent on wild-type p53 function. Wild-type but not mutant p53 bound strongly to a conserved element in the GADD45 gene, and a p53-containing nuclear factor, which bound this element, was detected in extracts from irradiated cells. Thus, we identified three participants (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.  相似文献   

19.
采用免疫细胞化学双PAP法,观察雌二醇(E2)、孕酮(P)对贝美格(Bemegride,Be)腹腔致痫大鼠顶叶大脑皮层、海马CA1、CA3区Glu和GABA免疫反应细胞的影响。图像分析结果显示:Be致痫组皮层、海马Glu免疫反应平均阳性细胞数及光密度较正常组明显增加(P<0.01);CABA细胞数及光密度减少(P<0.01)。给予E2后,Be致痫大鼠大脑皮层、海马Glu阳性细胞数目增多,光密度增高(P<0.01),GABA阳性细胞数目减少、光密度降低(P<0.05,P<0.01)而给予P后,致痫组GABA阳性细胞数目增多、光密度增高(P<0.01),Glu阳性细胞数目减少、光密度减低(P<0.01)。提示雌、孕激素的致痫、抗痫作用与其调节脑内GABA和Glu系统的兴奋性有关。  相似文献   

20.
Li K  Xu C  Zhang K  Yang A  Zhang J 《Proteomics》2007,7(9):1501-1512
Phosphorus (P) deficiency is a major limitation for plant growth and development. Plants can respond defensively to this stress, modifying their metabolic pathways and root morphology, and this involves changes in their gene expression. To better understand the low P adaptive mechanism of crops, we conducted the comparative proteome analysis for proteins isolated from maize roots treated with 1000 microM (control) or 5 microM KH2PO4 for 17 days. The results showed that approximately 20% of detected proteins on 2-DE gels were increased or decreased by two-fold or more under phosphate (Pi) stress. We identified 106 differentially expressed proteins by MALDI-TOF MS. Analysis of these P starvation responsive proteins suggested that they were involved in phytohormone biosynthesis, carbon and energy metabolisms, protein synthesis and fate, signal transduction, cell cycle, cellular organization, defense, secondary metabolism, etc. It could be concluded that they may play important roles in sensing the change of external Pi concentration and regulating complex adaptation activities for Pi deprivation to facilitate P homeostasis. Simultaneously, as a basic platform, the results would also be useful for the further characterization of gene function in plant P nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号