首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sine quanon of hyperresponsive airway disease in asthmatic subjects is the lackof a maximal response with increasing doses of aerosol agonistchallenge. Normal subjects, however, often appear toexhibit an airway response plateau effect even when challenged withhigh concentrations of agonist. To investigate this question of maximalnarrowing in individual airways in vivo, we used high-resolutioncomputed tomography to visualize canine airways narrowed by two routesof agonist challenge. We compared airway narrowing induced bymethacholine (MCh) via the conventional aerosol route to that caused bylocal atomization of MCh directly to individual airways. Our resultsshowed that, with aerosol challenge, airway responses never reached atruly flat plateau even at the highest possible nebulizerconcentrations. Airway closure was never observed. However, when MChwas delivered directly to the airway luminal surface, airways could beeasily narrowed to complete closure at modest (10 mg/ml) agonistconcentrations. Thus neither the elastic recoil of the lung norlimitations of smooth muscle shortening can be responsible for theapparent plateauing of dose-response curves. We suggest that theplateau results from limitations associated with the delivery of highconcentration of agonists via the aerosol route.

  相似文献   

2.
During methacholine challenge tests of airway responsiveness, it is invariably assumed that the administered dose of agonist is accurately reflected in the dose that eventually reaches the airway smooth muscle (ASM). However, agonist must traverse a variety of tissue obstacles to reach the ASM, during which the agonist is subjected to both enzymatic breakdown and removal by the bronchial and pulmonary circulations. This raises the possibility that a significant fraction of the deposited agonist may never actually make it to the ASM. To understand the nature of this effect, we measured the time course of changes in airway resistance elicited by various durations of methacholine aerosol in mice. We fit to these data a computational model of a dynamically contracting airway responding to agonist that diffuses through an airway compartment, thereby obtaining rate constants that reflect the diffusive barrier to methacholine. We found that these barriers can contribute significantly to the time course of airway narrowing, raising the important possibility that alterations in the diffusive barrier presented by the airway wall may play a role in pathologically altered airway responsiveness.  相似文献   

3.
We recently developed a computational model of an airway embedded in elastic parenchyma (Bates JH, Lauzon AM. J Appl Physiol 102: 1912-1920, 2007) that accurately mimics the time dependence of airway resistance on tidal volume and positive end-expiratory pressure (PEEP) following methacholine injection in normal animals. In the present study, we compared the model predictions of bronchodilation induced by a deep inflation (DI) of the lung following administration of the bronchial agonist methacholine to corresponding experimental measurements made in mice. We found that a DI in mice caused an immediate reduction in airway resistance when it was administered soon after intravenous injection of methacholine, while the airway smooth muscle was in the process of contracting. However, the magnitude of the reduction in resistance was greater and its subsequent rate of increase less than that predicted by the model. We found that this effect was most pronounced when the DI was given within approximately 3 s following methacholine injection, again in contrast to the predictions of the model. The reduction of airway resistance was virtually independent of the rate of lung inflation during the DI, however, which agrees with model predictions. We conclude that while the model accounts for a substantial fraction of the post-DI reduction in airway resistance seen experimentally, there remain important differences between prediction and experiment that suggest that the effects of a DI are not simply due to eccentric contraction of the airway smooth muscle.  相似文献   

4.
When airway smooth muscle is contracted in vitro, the airway lumen continues to narrow with increasing concentrations of agonist until complete airway closure occurs. Although there remains some controversy regarding whether airways can close in vivo, recent work has clearly demonstrated that, if the airway is sufficiently stimulated with contractile agonists, complete closure of even large cartilaginous conducting airways can readily occur with the lung at functional residual capacity (Brown RH and Mitzner W. J Appl Physiol 85: 2012-2017, 1998). This result suggests that the tethering of airways in situ by parenchymal attachments is small at functional residual capacity. However, at lung volumes above functional residual capacity, the outward tethering of airways should increase, because both the parenchymal shear modulus and tethering forces increase in proportion to the transpulmonary pressure. In the present study, we tested whether we could prevent airway closure in vivo by increasing lung volume with positive end-expiratory pressure (PEEP). Airway smooth muscle was stimulated with increasing methacholine doses delivered directly to airway smooth muscle at three levels of PEEP (0, 6, and 10 cmH(2)O). Our results show that increased lung volume shifted the airway methacholine dose-response curve to the right, but, in many airways in most animals, airway closure still occurred even at the highest levels of PEEP.  相似文献   

5.
Airway hyperresponsiveness (AHR) is a defining feature of asthma. We have previously shown, in mice sensitized and challenged with antigen, that AHR is attributable to normal airway smooth muscle contraction with exaggerated airway closure. In the present study we sought to determine if the same was true for mice known to have intrinsic AHR, the genetic strain of mice, A/J. We found that A/J mice have AHR characterized by minimal increase in elastance following aerosolized methacholine challenge compared with mice (BALB/c) that have been antigen sensitized and challenged [concentration that evokes 50% change in elastance (PC(50)): 22.9 +/- 5.7 mg/ml for A/J vs. 3.3 +/- 0.4 mg/ml for antigen-challenged and -sensitized mice; P < 0.004]. Similar results were found when intravenous methacholine was used (PC(30) 0.22 +/- 0.08 mg/ml for A/J vs. 0.03 +/- 0.004 mg/ml for antigen-challenged and -sensitized mice). Computational model analysis revealed that the AHR in A/J mice is dominated by exaggerated airway smooth muscle contraction and that when the route of methacholine administration was changed to intravenous, central airway constriction dominates. Absorption atelectasis was used to provide evidence of the lack of airway closure in A/J mice. Bronchoconstriction during ventilation with 100% oxygen resulted in a mean 9.8% loss of visible lung area in A/J mice compared with 28% in antigen-sensitized and -challenged mice (P < 0.02). We conclude that the physiology of AHR depends on the mouse model used and the route of bronchial agonist administration.  相似文献   

6.
Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H2O). Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness.  相似文献   

7.
The effects of endothelin (ET) agonists on airway mechanics and bronchial blood flow were studied as well as the effects of mixed ET-receptor antagonist bosentan on allergen-induced airway reactions in the pig. ET agonists [ET-1, ET-3, and the ET(B) receptor-selective agonist Sarafotoxin 6c (Sf6c)] were given as intravenous injections (0.4-200 pmol/kg) to eight anesthetized pigs. Bosentan (10 mg/kg iv) was then administered, and the injections were repeated. Only Sf6c caused a significant increase in airway resistance, and this response was blocked by bosentan. Sf6c and ET-1 (200 and 400 pmol/kg, respectively) were also given as aerosols to five pigs. Sf6c, but not ET-1, caused bronchoconstriction via this route. All agonists (intravenous) caused increases in bronchial vascular conductance, an effect that was blocked by an NO-synthase inhibitor (N(G)-nitro-L-arginine) but unaffected by a cyxlooxygenase inhibitor (diclofenac). Fourteen pigs were sensitized with ascaris suum antigen. Under anesthesia, eight pigs were pretreated with bosentan, and six pigs were controls. They were all challenged with allergen aerosol resulting in acute bronchoconstriction and elevation of ET-1 in bronchoalveolar lavage fluid. Bosentan did not affect the maximal acute airway obstruction but markedly increased baseline bronchial vascular conductance, suggesting a basal vascular tone regulated by ETs. In conclusion, ETs induce bronchoconstriction primarily via the ET(B) receptor in the pig. However, ETs are probably not involved in the allergen-induced acute bronchoconstriction in this model.  相似文献   

8.
The prevalence of asthma has taken on pandemic proportions. Since this disease predisposes patients to severe acute airway constriction, novel mechanisms capable of promoting airway smooth muscle relaxation would be clinically valuable. We have recently demonstrated that activation of endogenous airway smooth muscle GABA(A) receptors potentiates β-adrenoceptor-mediated relaxation, and molecular analysis of airway smooth muscle reveals that the α-subunit component of these GABA(A) receptors is limited to the α(4)- and α(5)-subunits. We questioned whether ligands with selective affinity for these GABA(A) receptors could promote relaxation of airway smooth muscle. RT-PCR analysis of GABA(A) receptor subunits was performed on RNA isolated by laser capture microdissection from human and guinea pig airway smooth muscle. Membrane potential and chloride-mediated current were measured in response to GABA(A) subunit-selective agonists in cultured human airway smooth muscle cells. Functional relaxation of precontracted guinea pig tracheal rings was assessed in the absence and presence of the α(4)-subunit-selective GABA(A) receptor agonists: gaboxadol, taurine, and a novel 8-methoxy imidazobenzodiazepine (CM-D-45). Only messenger RNA encoding the α(4)- and α(5)-GABA(A) receptor subunits was identified in RNA isolated by laser capture dissection from guinea pig and human airway smooth muscle tissues. Activation of airway smooth muscle GABA(A) receptors with agonists selective for these subunits resulted in appropriate membrane potential changes and chloride currents and promoted relaxation of airway smooth muscle. In conclusion, selective subunit targeting of endogenous airway smooth muscle-specific GABA(A) receptors may represent a novel therapeutic option for patients in severe bronchospasm.  相似文献   

9.
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.  相似文献   

10.
Methacholine causes reflex bronchoconstriction   总被引:1,自引:0,他引:1  
To determine whether methacholine causes vagally mediated reflexconstriction of airway smooth muscle, we administered methacholine tosheep either via the bronchial artery or as an aerosol via tracheostomyinto the lower airways. We then measured the contraction of anisolated, in situ segment of trachealis smooth muscle and determinedthe effect of vagotomy on the trachealis response. Administeringmethacholine to the subcarinal airways via the bronchial artery(0.5-10.0 µg/ml) caused dose-dependent bronchoconstriction andcontraction of the tracheal segment. At the highest methacholine concentration delivered, trachealis smooth muscle tension increased anaverage of 186% over baseline. Aerosolized methacholine (5-7 breaths of 100 mg/ml) increased trachealis tension by 58% and airwaysresistance by 183%. As the bronchial circulation in the sheep does notsupply the trachea, we postulated that the trachealis contraction wascaused by a reflex response to methacholine in the lower airways.Bilateral vagotomy essentially eliminated the trachealis response andthe airways resistance change after lower airways challenge (either viathe bronchial artery or via aerosol) with methacholine. We concludethat 1) methacholine causes asubstantial reflex contraction of airway smooth muscle and2) the assumption may not be validthat a response to methacholine in humans or experimental animalsrepresents solely the direct effect on smooth muscle.

  相似文献   

11.
The aims of this work were (1) to determine the dose-response relationship between ex vivo exposure to oxidizing pollutants such as nitrogen dioxide (NO2), the aldehyde acrolein, and ozone (O3), and the reactivity to agonists in isolated human bronchial smooth muscle; and (2) to investigate the alterations in the cellular mechanisms of human airway smooth muscle contraction induced by such exposures. Experiments were performed in isolated human bronchi obtained at thoracotomy. Isometric contraction in response to a variety of agonists was compared between pollutant-exposed preparations and paired controls. Short exposures to NO2, acrolein, or O3 altered the subsequent airway smooth muscle responsiveness in a dose-dependent manner. The cellular mechanisms producing the airway hyperresponsiveness observed in vitro are shared by the three pollutants and include alterations in airway smooth muscle excitation-contraction coupling as well as indirect effects on neutral endopeptidase activity.Abbreviations ACh acetylcholine - CCRC cumulative concentration-response curve - KH Krebs-Henseleit solution - NEP neutral endopeptidase - NKA neurokinin A - SP substance P  相似文献   

12.
Asthma is characterized by chronic airways inflammation, airway wall remodeling, and airway hyperresponsiveness (AHR). An increase in airway smooth muscle has been proposed to explain a major part of AHR in asthma. We have used unbiased stereological methods to determine whether airway smooth muscle hyperplasia and AHR occurred in sensitized, antigen-challenged Brown Norway (BN) rats. Ovalbumin (OA)-sensitized BN rats chronically exposed to OA aerosol displayed airway inflammation and a modest level of AHR to intravenously administered ACh 24 h after the last antigen challenge. However, these animals did not show an increase in smooth muscle cell (SMC) number in the left main bronchus, suggesting that short-lived inflammatory mechanisms caused the acute AHR. In contrast, 7 days after the last aerosol challenge, there was a modest increase in SMC number, but no AHR to ACh. Addition of FCS to the chronic OA challenge protocol had no effect on the degree of inflammation but resulted in a marked increase in both SMC number and a persistent (7-day) AHR. These results raise the possibility that increases in airway SMC number rather than, or in addition to, chronic inflammation contribute to the persistent AHR detected in this model.  相似文献   

13.
Airway reactivity in ponies with recurrent airway obstruction (heaves)   总被引:2,自引:0,他引:2  
We measured lung function and airway reactivity to histamine administered by aerosol in two groups of ponies. Principal ponies had a history of heaves, a disease characterized by recurrent airway obstruction when ponies are housed in a barn and fed hay; control ponies had no history of airway obstruction. Ponies were paired (principal and control) and measurements were made when principal ponies were at pasture and in clinical remission (period A), following barn housing when principal ponies had acute airway obstruction (period B), and after a further 1 and 2 wk at pasture (periods C and D). At periods A, C, and D dynamic compliance (Cdyn), pulmonary resistance (RL), arterial O2 tension (PaO2), and CO2 tension (PaCO2) of principals and controls did not differ. Barn housing (period B) decreased Cdyn and PaO2 and increased RL in principals but not controls. The ED65Cdyn (the dose of histamine to reduce Cdyn to 65% of base line) did not differ in principals and controls at periods A, C, and D. At period B, ED65Cdyn decreased by 2.5-log doses of histamine in principals while ED65Cdyn was not affected in controls. There was no correlation between changes in airway reactivity and changes in RL and Cdyn. We conclude that ponies in clinical remission from heaves are not hyperreactive to histamine aerosol. This model of lung disease is similar to some forms of industrial asthma in which hyperreactivity occurs only during acute airway obstruction. The lack of correlation between ED65Cdyn and the degree of airway obstruction suggests that the hyperreactivity of principal ponies to histamine aerosol cannot be explained solely by alterations in baseline airway caliber.  相似文献   

14.
Airway wall remodeling in response to inflammation might alter load on airway smooth muscle and/or change airway wall stability. We therefore determined airway wall compliance and closing pressures in an animal model. Weanling pigs were sensitized to ovalbumin (OVA; ip and sc, n = 6) and were subsequently challenged three times with OVA aerosol. Control pigs received 0.9% NaCl (n = 4) in place of OVA aerosol. Bronchoconstriction in vivo was assessed from lung resistance and dynamic compliance. Semistatic airway compliance was recorded ex vivo in isolated segments of bronchus, after the final OVA aerosol or 0.9% NaCl challenge. Internally or externally applied pressure needed to close bronchial segments was determined in the absence or presence of carbachol (1 microM). Sensitized pig lungs exhibited immediate bronchoconstriction to OVA aerosol and also peribronchial accumulations of monocytes and granulocytes. Compliance was reduced in sensitized bronchi in vitro (P < 0.01), and closing pressures were increased (P < 0.05). In the presence of carbachol, closing pressures of control and sensitized bronchi were not different. We conclude that sensitization and/or inflammation increases airway load and airway stability.  相似文献   

15.
Airway hyperresponsiveness (AHR) is the main feature of allergic subjects/animals, and its underlying mechanism is not clear. We explored whether antigen-induced AHR is associated with cytokine generation, inflammatory cell infiltration, and/or remodeling of airway smooth muscle. Guinea pigs were divided into three groups: control-1, control-2, and ovalbumin (OA). Animals in the control-1 group were not sensitized, while those in the control-2 and the OA group were sensitized with OA. Forty to forty-two days after the initial sensitization or equivalent time, animals in the control-2 group inhaled saline aerosol and those in the OA group inhaled OA aerosol for 30 min. Twenty-four h after OA challenge or equivalent time, animals in each group were further divided into two subgroups: methacholine and hyperventilation. Functional tests were carried out before and after the methacholine or hyperventilation treatment. Immediately after the functional study, bronchoalveolar lavage fluid was collected for determination of inflammatory cells and tumor necrosis factor-alpha (TNF-alpha. The trachea was then removed to determine smooth muscle mass. In both the methacholine and hyperventilation subgroups, significantly more severe airway constriction was found in the OA group, indicating OA-induced AHR. Eosinophil accumulation increased in the control-2 group and this increase was further augmented in the OA group. In addition, TNF-alpha level and smooth muscle mass significantly increased in the OA group. These results suggest that OA challenge-induced AHR is associated with increases in TNF-alpha level, cellular infiltration, and airway smooth muscle mass.  相似文献   

16.
We investigated the effects of a selective beta(2)-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (ZL) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to ZL spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.  相似文献   

17.
Allergic inflammation is known to cause airway hyperresponsiveness in mice. However, it is not known whether inflammation affects the stiffness of the airway wall, which would alter the load against which the circumscribing smooth muscle shortens when activated. Accordingly, we measured the time course of airway resistance immediately following intravenous methacholine injection in acutely and chronically allergically inflamed mice. We estimated the effective stiffness of the airway wall in these animals by fitting to the airway resistance profiles a computational model of a dynamically narrowing airway embedded in elastic parenchyma. Effective airway wall stiffness was estimated from the model fit and was found not to change from control in either the acute or chronic inflammatory groups. However, the acutely inflamed mice were hyperresponsive compared with controls, which we interpret as reflecting increased delivery of methacholine to the airway smooth muscle through a leaky pulmonary endothelium. These results support the notion that acutely inflamed BALB/c mice represent an animal model of functionally normal airway smooth muscle in a transiently abnormal lung.  相似文献   

18.
Bronchial hyperresponsiveness is one of the main features of asthma. A nicotinic receptor agonist, 1,1-dimethylphenyl 1,4-piperazinium (DMPP), has been shown to have an inhibitory effect on airway response to methacholine in an in vivo model of asthma. The aims of this study were to 1) verify whether nicotinic acetylcholine receptors (nAChR) were present on mouse tracheal smooth muscle, 2) verify whether bronchoprotection observed in mice was due to a direct effect on airway smooth muscle, and 3) compare the effects of nicotinic agonists to that of salbutamol. Alpha3-, alpha4-, and alpha7-nAChR subunits were detected by immunofluorescence on tracheal tissues from normal BALB/c mice. The effect of DMPP on tracheal responsiveness was verified by an isometric method. Tracheas were isolated from normal mice, placed in organ baths, and contracted with a single dose of methacholine. Cumulative doses of DMPP or salbutamol were added to the baths. Results show that mouse tracheal smooth muscle is positive for alpha4- and alpha7-nAChR subunits and that the epithelium is positive for alpha3-, alpha4-, and alpha7-subunits. DMPP induced a greater dose-dependent relaxation of tracheal smooth muscles precontracted with methacholine than with salbutamol. These results suggest that the smooth muscle-relaxing effect of DMPP could have some interest in the treatment of obstructive pulmonary diseases.  相似文献   

19.
We investigated the correlation between collateral airway reactivity and other indexes of lung reactivity in response to aerosol and intravenous (iv) challenges. In four anesthetized mongrel dogs, we measured the peripheral airway resistance (Rp) to gas flow out of a wedged lung segment in different lobes on multiple occasions. We obtained dose-response curves of peripheral airways challenged with iv histamine or aerosols through the bronchoscope. During the same iv bolus challenge, whole lung airway pressure (Paw) responses to histamine were also measured. On separate occasions, changes in lung resistance (RL) were measured after the whole lung was challenged with a histamine aerosol. Reactivity was assessed from the dose-response curves for Rp and RL as the PD50 (dose required to produce a 50% increase); for changes in Paw we calculated the PD15 (dose required to produce a 15% increase over baseline). Results for Rp showed considerably more variability among different lobes in a given animal with the aerosol challenge through the bronchoscope than with the iv challenge. With aerosol challenge there were no significant differences in the mean PD50 for Rp among any of the animals. However, with the iv challenge two of the dogs showed significant differences from the others in reactivity assessed with Rp (P less than 0.01). Moreover, the differences found in the peripheral airways with iv challenge reflected differences found in whole lung reactivity assessed with either iv challenge (Paw vs. Rp, r2 = 0.96) or whole lung aerosol challenge (RL vs. Rp, r2 = 0.84). We conclude that the measurement of the collateral resistance response to iv challenge may provide a sensitive method for assessing airway reactivity.  相似文献   

20.
Repeated aerosol antigen challenge of previously sensitized guinea pigs induces airway hyperresponsiveness to inhaled acetylcholine. To determine the mechanism producing these airway changes and assuming that changes in the trachealis muscle reflect changes in muscle of the entire tracheobronchial tree, we examined the in vitro smooth muscle mechanics and morphometric parameters of tracheae from guinea pigs demonstrating hyperresponsiveness in vivo vs. tracheae from control guinea pigs. No differences between these groups were found in luminal volume at zero transmural pressure, passive pressure-volume characteristics, or area of airway wall. Smooth muscle areas were slightly less in tracheae from hyperresponsive guinea pigs. Tracheae from hyperresponsive guinea pigs had both significantly increased isovolumetric force generation and isobaric shortening compared with tracheae from controls when evaluated over the range of transmural pressures from -40 to 40 cmH2O. We conclude that the in vivo airway hyperresponsiveness induced with repeated antigen challenge is associated with both increased force generation and shortening of tracheal smooth muscle without increased muscle mass, suggesting enhanced contractile activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号