首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Recent considerations of parasite virulence have focused on the adverse effects that parasites can have on the survival of their hosts. Many parasites, however, reduce host fitness by an equally deleterious but different means, by causing partial or complete sterility of their hosts. A model of optimal parasite virulence is developed in which a quantity of host resources can be allocated to either host or parasite reproduction. Increases in parasite reproduction thus cause reductions in host fertility. The model shows that under a wide variety of ecological conditions, such parasites should completely sterilize their hosts. Only when opportunities for horizontal transmission are very limited should the parasites appropriate less than all of a host's reproductive resources. Field and laboratory evidence shows that the nematode parasite Howardula aoronymphium is relatively avirulent to one of its principal host species, Drosophila falleni, whereas it is much more virulent to D. putrida and D. neotestacea, suggesting that there may be substantial vertical transmission in D. falleni. However, epidemiological studies in the field and laboratory assays of host specificity strongly suggest that the three host species share a single parasite pool in natural populations, indicating that parasites in all three host species experience high levels of horizontal transmission. Thus, the low virulence of H. aoronymphium to D. falleni is not consistent with the model of optimal parasite virulence. It is proposed that this suboptimal virulence in D. falleni is a consequence of populations of H. aoronymphium being selected to exploit simultaneously several different host species. As a result, virulence may not be optimal in any one host. One must, therefore, consider the full range of host species in assessing a parasite's virulence.  相似文献   

2.
Surprisingly little is known about what determines a parasite's host range, which is essential in enabling us to predict the fate of novel infections. In this study, we evaluate the importance of both host and parasite phylogeny in determining the ability of parasites to infect novel host species. Using experimental lab assays, we infected 24 taxonomically diverse species of Drosophila flies (Diptera: Drosophilidae) with five different nematode species (Tylenchida: Allantonematidae: Howardula, Parasitylenchus), and measured parasite infection success, growth, and effects on female host fecundity (i.e., virulence). These nematodes are obligate parasites of mushroom-feeding Drosophila, particularly quinaria and testacca group species, often with severe fitness consequences on their hosts. We show that the potential host ranges of the nematodes are much larger than their actual ranges, even for parasites with only one known host species in nature. Novel hosts that are distantly related from the native host are much less likely to be infected, but among more closely related hosts, there is much variation in susceptibility. Potential host ranges differ greatly between the related parasite species. All nematode species that successfully infected novel hosts produced infective juveniles in these hosts. Most novel infections did not result in significant reductions in the fecundity of female hosts, with one exception: the host specialist Parasitylenchus nearcticus sterilized all quinaria group hosts, only one of which is a host in nature. The large potential host ranges of these parasites, in combination with the high potential for host colonization due to shared mushroom breeding sites, explain the widespread host switching observed in comparisons of nematode and Drosophila phylogenies.  相似文献   

3.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

4.
Understanding the reasons why different parasites cause different degrees of harm to their hosts is an important objective in evolutionary biology. One group of models predicts that if hosts are infected with more than one strain or species of parasite, then competition between the parasites will select for higher virulence. While this idea makes intuitive sense, empirical data to support it are rare and equivocal. We investigated the relationship between fitness and virulence during both inter‐ and intraspecific competition for a fungal parasite of insects, Metarhizium anisopliae. Contrary to theoretical expectations, competition favored parasite strains with either a lower or a higher virulence depending on the competitor: when in interspecific competition with an entomopathogenic nematode, Steinernema feltiae, less virulent strains of the fungus were more successful, but when competing against conspecific fungi, more virulent strains were better competitors. We suggest that the nature of competition (direct via toxin production when competing against the nematode, indirect via exploitation of the host when competing against conspecific fungal strains) determines the relationship between virulence and competitive ability.  相似文献   

5.
Per Arneberg 《Ecography》2001,24(3):352-358
Epidemiological models predict a positive relationship between host population density and abundance of macroparasites. Here I lest these by a comparative study. I used data on communities of four groups of parasites inhabiting the gastrointestinal tract of mammals, nematodes of the orders Oxyurida. Ascarida. Enoplida and Spirurida. respectively. The data came from 44 mammalian species and represent examination of 16886 individual hosts. I studied average prevalence of all nematodes within an order in a host species, a measure of community level abundance, and considered the potential confounding effects of host body weight, fecundity, age at maturity and diet. Host population density was positively correlated with parasite prevalence within the order Oxyurida, where all species have direct life cycles. Considering the effects of other variables did not change this. This supports the assumption that parasite transmission rate generally is a positive function of host population density: It also strengthens the hypothesis that host densities generally act as important determinants of species richness among directly transmitted parasites and suggests that negative influence of such parasites on host population growth rate increase with increasing host population density among host species. Within the other three nematode orders, where a substantial number of the species have indirect life cycles, no relationships between prevalence and host population density were seen, Again. considering the effects of other variables did not affect this conclusion. This suggests that host population density is a poor predictor of species richness of indirectly transmitted parasites and that effects of such parasites on host population dynamics do not scale with host densities among species of hosts.  相似文献   

6.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

7.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

8.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

9.
One of the outstanding and poorly understood examples of cooperation between species is found in corals, hydras and jellyfish that form symbioses with algae. These mutualistic algae are mostly acquired infectiously from the seawater and, according to models of virulence evolution, should be selected to parasitize their hosts. We altered algal transmission between jellyfish hosts in the laboratory to examine the potential for virulence evolution in this widespread symbiosis. In one experimental treatment, vertical transmission of algae (parent to offspring) selected for symbiont cooperation, because symbiont fitness was tied to host reproduction. In the other treatment, horizontal transmission (infectious spread) decoupled symbiont fitness from the host, potentially allowing parasitic symbionts to spread. Fitness estimates revealed a striking shift to parasitism in the horizontal treatment. The horizontally transmitted algae proliferated faster within hosts and had higher dispersal rates from hosts compared to the vertical treatment, while reducing host reproduction and growth. However, a trade-off was detected between harm caused to hosts and symbiont fitness. Virulence trade-offs have been modelled for pathogens and may be critical in stabilising 'infectious' symbioses. Our results demonstrate the dynamic nature of this symbiosis and illustrate the potential ease with which beneficial symbionts can evolve into parasites.  相似文献   

10.
Virulence in malaria: an evolutionary viewpoint   总被引:10,自引:0,他引:10  
Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human malaria parasite, P. falciparum, in relation to this virulence trade-off hypothesis. The data from both species show strong positive correlations between asexual multiplication, transmission rate, infection length, morbidity and mortality, and therefore support the underlying assumptions of the hypothesis. Moreover, the P. falciparum data show that expected total lifetime transmission of the parasite is maximized in young children in whom the fitness cost of host mortality balances the fitness benefits of higher transmission rates and slower clearance rates, thus exhibiting the hypothesized virulence trade-off. This evolutionary explanation of virulence appears to accord well with the clinical and molecular explanations of pathogenesis that involve cytoadherence, red cell invasion and immune evasion, although direct evidence of the fitness advantages of these mechanisms is scarce. One implication of this evolutionary view of virulence is that parasite populations are expected to evolve new levels of virulence in response to medical interventions such as vaccines and drugs.  相似文献   

11.
Fish mariculture has dramatically expanded in recent years in Mediterranean countries. In this scenario, several pathological problems have logically arisen and parasitological etiologies are increasingly being reported, either as primary or secondary pathogens. Myxozoa is the most diverse and economically important group of fish parasites, and several species are known to cause or contribute to losses in mariculture. Species of the genus Enteromyxum currently constitute the most serious parasitological threat. Some unusual biological characters, such as wide host spectrum and direct fish-to-fish transmission, together with high virulence for some host species, combine a dangerous cocktail which is emerging in recent years. Closed-system (recirculation) and heated-water locations are especially sensitive to chronic infections by these parasites, which can cause serious mortality and even discourage culture of some fish species at certain locations (i.e, Diplodus puntazzo). The presentation presents an overview of recent advances in research of marine myxozoans, focusing mainly in the most pathogenic, Enteromyxum spp. The incidence of these and other emerging infections, and the design of potential strategies for control will be introduced.  相似文献   

12.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

13.
Selection in plant parasites for virulence on resistant hosts and the resulting effects on parasite fitness may be considered as a driving force in host-parasite coevolution. In the present study, we tested the hypothesis that a fitness cost may be associated with nematode virulence, using the interaction between the parthenogenetic species Meloidogyne incognita and tomato as a model system. The reproductive parameters of near-isogenic lines of the nematode, selected for avirulence or virulence against the tomato Mi resistance gene, were analysed and combined into a reproductive index that was taken as a measure of fitness. The lower fitness of the virulent lines on the susceptible tomato cultivar showed for the first time that a measurable fitness cost is associated with unnecessary virulence in the nematode. Although parthenogenesis should theoretically lead to little genetic variability, such cost may impose a direct constraint on the coevolution between the plant and the nematode populations, and suggests an adaptive significance of trade-offs between selected characters and fitness-related traits. These results indicate that, although plant resistance can be broken, it might prove durable in some conditions if the virulent nematodes are counterselected in susceptible plants, which could have important consequences for the management of resistant cultivars in the field.  相似文献   

14.
《Animal behaviour》2002,63(2):269-275
Talitrid amphipods spend their days burrowed in sand to avoid predators as well as desiccation and heat stress, although other factors may influence burrowing depth. We investigated the potential role of mermithid nematode parasites in determining burrowing depth in the amphipod Talorchestia quoyana. Mermithids grow as parasites inside amphipods until they reach adulthood, when they must emerge from their host into moist sand to complete their life cycle and reproduce. When allowed to burrow to a depth of their choice in experimental situations, large amphipods burrowed deeper than small ones. In addition, deep-burrowing amphipods were more likely to be infected by mermithid nematodes, and harboured longer worms, on average, than amphipods that burrowed close to the sand surface. This last result is not an artefact of the larger size of deep-burrowing amphipods: the increase in worm length with increasing depth was found after statistical correction for host size. In other words, amphipods that burrowed deeper harboured longer worms than expected based on their body size, whereas those that stayed near the surface of the sand column harboured worms shorter than one would expect based on host size. This implies that the greater burrowing depth of infected amphipods is a consequence, and not a cause, of infection. These results emphasize the importance of parasitism as a determinant of the small-scale spatial distribution of their hosts.  相似文献   

15.
Our current understanding on how pathogens evolve relies on the hypothesis that pathogens' transmission is traded off against host exploitation. In this study, we surveyed the possibility that trade-offs determine the evolution of the bacterial insect pathogen, Xenorhabdus nematophila. This bacterium rapidly kills the hosts it infects and is transmitted from host cadavers to new insects by a nematode vector, Steinernema carpocapsae. In order to detect trade-offs in this biological system, we produced 20 bacterial lineages using an experimental evolution protocol. These lineages differ, among other things, in their virulence towards the insect host. We found that nematode parasitic success increases with bacteria virulence, but their survival during dispersal decreases with the number of bacteria they carry. Other bacterial traits, such as production of the haemolytic protein XaxAB, have a strong impact on nematode reproduction. We then combined the result of our measurements with an estimate of bacteria fitness, which was divided into a parasitic component and a dispersal component. Contrary to what was expected in the trade-off hypothesis, we found no significant negative correlation between the two components of bacteria fitness. Still, we found that bacteria fitness is maximized when nematodes carry an intermediate number of cells. Our results therefore demonstrate the existence of a trade-off in X. nematophila, which is caused, in part, by the reduction in survival this bacterium causes to its nematode vectors.  相似文献   

16.
Mermithid nematodes are entomophagous parasites and, despite being present in diverse aquatic insects, studies of caddisflies acting as definitive hosts are few and the ecological impacts on host populations are largely unknown. During a four-year study in a stream in southeastern Australia, parasitic mermithid worms were commonly found inside adult caddisflies, but only species of the genus Ecnomus McLachlan, 1864 (Ecnomidae). Ecnomus were the definitive host and parasite prevalence ranged from <1% to nearly 50% across six species. Species-specific prevalence varied little between years and was typically higher in males than in females. Parasite intensity ranged from 1 to 6 (median = 1), but did not vary between species or sexes. Infected hosts could fly, but were castrated and died when worms emerged. High prevalence and virulence (reproductive failure and death of the host) suggests that these parasites could potentially play a role in the population dynamics of some Ecnomus spp.  相似文献   

17.
Most models concerning the evolution of a parasite's virulence and its host's resistance assume that each component of the relationship (transmission, virulence, recovery, etc.) is controlled by either the host or the parasite but not by both. We present a model that describes the coevolution of host and parasite, assuming that the rate of transmission or the virulence depends on both genotypes. The evolution of these traits is constrained by trade-offs that account for costs of defense and attack strategies, in line with previous studies on the separate evolution of the host and the parasite. Considering shared control by the host and the parasite in determining the traits of the relationship leads to several novel predictions. First, the host should evolve maximal investment in defense against parasites with an intermediate replication rate. Second, the evolution of the parasite strongly depends on the way the host's defense is described. Third, the coevolutionary process may lead to decreasing the parasite's virulence as a response to a rise in the host's background mortality, contrary to classical predictions.  相似文献   

18.
Transmission mode has been suggested to be a strong predictor of virulence. According to theory, the transmission of vector-borne parasites should be less dependent on host mobility than directly transmitted parasites. This could select for increased exploitation of host resources in parasites transmitted by vectors, which may be manifested as higher virulence. Here, we test the prediction that there is an association between transmission mode and the effect on host mobility by comparing parasite infection levels and mobility in willow ptarmigan (Lagopus lagopus L.). We examined the endoparasite infracommunities of individual hosts to obtain annual, quantitative data on four vector-transmitted species (Leucocytozoon lovati, Trypanosoma avium, Haemoproteus mansoni and microfilaria), two directly transmitted species (Trichostrongylus tenuis and Eimeria sp.) and two species with indirect life cycles (Hymenolepis microps and Parionella urogalli). We then used observed variations in freeze-or-flee responses of individual willow ptarmigan to assess whether parasite intensities were related to scored freezing responses. From a field data set covering a period of 9 years from a single area, we found that stronger freezing responses were associated with higher intensities of vector-borne parasites, especially with higher intensities of the haemosporidian L. lovati. Freezing responses were not associated with parasites transmitted in other ways. Thus, high intensities of vector-borne parasites tended to reduce host movements, while parasites with other transmission modes did not.  相似文献   

19.
Evolutionary models predict that parasite virulence (parasite-induced host mortality) can evolve as a consequence of natural selection operating on between-host parasite transmission. Two major assumptions are that virulence and transmission are genetically related and that the relative virulence and transmission of parasite genotypes remain similar across host genotypes. We conducted a cross-infection experiment using monarch butterflies and their protozoan parasites from two populations in eastern and western North America. We tested each of 10 host family lines against each of 18 parasite genotypes and measured virulence (host life span) and parasite transmission potential (spore load). Consistent with virulence evolution theory, we found a positive relationship between virulence and transmission across parasite genotypes. However, the absolute values of virulence and transmission differed among host family lines, as did the rank order of parasite clones along the virulence-transmission relationship. Population-level analyses showed that parasites from western North America caused higher infection levels and virulence, but there was no evidence of local adaptation of parasites on sympatric hosts. Collectively, our results suggest that host genotypes can affect the strength and direction of selection on virulence in natural populations, and that predicting virulence evolution may require building genotype-specific interactions into simpler trade-off models.  相似文献   

20.
The transmission of nematode parasites of vertebrates is reviewed with special reference to the phenomena of monoxeny, heteroxeny, paratenesis, and precocity. Monoxeny is divided into 2 types. Primary monoxeny assumes that there was never an intermediate host in the transmission. Secondary monoxeny assumes the loss of an intermediate host during the course of evolution and its replacement by a tissue phase in the final host. Heteroxeny, or the use of intermediate hosts, is a common feature of many nematode groups. The Spirurida utilize arthropods, the Metastrongyloidea molluscs, and Ascaridida arthropods and vertebrates. Paratenesis, or the use of transport hosts, is a common feature of the transmission of nematode parasites of carnivores. It is postulated that in some instances paratenic hosts have become intermediate hosts and replaced the original intermediate host. Precocity in the development of nematodes in intermediate hosts (including what may have been paratenic hosts) is defined as growth and/or development beyond the expected. Its occurrence among the nematode parasites of vertebrates is reviewed. It is regarded as a transmission strategy which accelerates gamete production in the final host. Precocity could also provide the mechanism for the transfer of a parasite from a predator final host to a prey final host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号