首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of anomalous, binucleate pollen grains and their subsequent embryogenic development, induced by anther culture in Hyoscyamus niger, were analyzed by transmission electron microscopy (TEM). In culture, uninucleate pollen grains occasionally divided symmetrically giving rise to two apparently identical nuclei sharing a common cytoplasm. These nuclei divided once or twice unaccompanied by cell wall formation. After the daughter nuclei organized into cells, their subsequent division products contributed to embryoid formation. In conjunction with previous studies of pollen embryogenesis in H. niger, it appears that in contrast to the principle mode of embryogenesis (i.e., first asymmetric division forms typical two-celled pollen grain and the generative cell acts as the embryogenic precursor), anomalous pollen show no carry-over of gametophytic influences following embryogenic induction. This suggests that specific pathways of embryogenesis are correlated with the rate at which gametophytic gene activity is repressed following induction.  相似文献   

2.
Summary Pollen grains capable of embryogenesis were selectively isolated from (a) near-mature buds from plants induced to flower in short days and low temperature (8 hours light and 18 °C) and (b) young buds from these plants with an additional low temperature treatment (10 °C for 10 days) and fixed for electron microscopy. The pollen from the former formed embryos at a very low frequency in culture, and at the subcellular level showed different degrees of regression of cytoplasm and mitochondria. On the contrary, cold-treated pollen were characterized by a high frequency of embryogenesis, up to 25% of the cultured pollen. They did not show regression of cytoplasm or organelles but had an attenuated cytoplasm which was not rich in ribosomes. Another noteworthy feature of embryogenic grains was the condensed nature of mitochondria. These characteristics of embryogenic grains indicate that they are repressed for gametophytic differentiation. The embryogenic pollen did not differentiate from gametophytic pollen which were very distinctive, having a thick exine, and dense cytoplasm rich in ribosomes. The close similarity of embryogenic grains with young microspores in terms of thin exine and sparse cytoplasm is suggestive of an indeterminate state and that determination into gametophytic or sporophytic (embryogenic) type is probably the function of differential gene activity. Of interest, in this context, is the condensation of mitochondria in embryogenic grains. The relationship, if any, between mitochondrial condensation and embryogenesis remains to be resolved.  相似文献   

3.
The regulation of developmental pathways in cultured microspores of tobacco (Nicotiana tabacum L) and snapdragon (Antirrhinum majus L) by medium pH is described for the first time. Unicellular tobacco and snapdragon microspores developed into normal, fertile pollen when cultured in media T1 and AT3 at pH 7.0 and 25°C for 6 and 8 days, respectively. First, pollen mitosis was asymmetric and mature pollen grains were filled with starch granules and germinated upon transfer to a germination medium. However, when tobacco and snapdragon microspores were cultured in media T1 and AT3, respectively, at pH 8.0–8.5 for 4–6 days at 25 °C, the frequency of symmetric division increased significantly with the formation two nuclei of equal size, and the gametophytic pathway was blocked, as seen by the lack of starch accumulation and the inhibition of pollen germination. The transfer of these microspores to embryogenesis medium AT3 at pH 6.5 resulted in the formation of multicellular structures in both species and, in tobacco, in the formation of embryos and plants. In order to understand the possible mechanisms of the action of high pH, sucrose metabolism was analysed in isolated microspores of tobacco cultured at various pH values. Invertase (EC 3.2.1.26) activity in microspores was maximal at pH 5.0 and strongly decreased at higher pH, leading to a slow-down of sucrose cleavage. At the same time the incorporation of 14C-labelled sucrose from the medium into microspores was drastically reduced at high pH. These data suggest that isolated microspores are not able to metabolise carbohydrates at high pH and thus undergo starvation stress, which was shown earlier to block the gametophytic pathway and trigger sporophytic development.  相似文献   

4.
In this work, the cell architecture of the microspore following both gametophytic and embryogenic developmental pathways in vitro was compared with the gametophytic development in vivo in Brassica napus, at both light and electron microscopy level. The microspore reprogramming to embryogenesis involves defined changes affecting cell activities and structural organization which can be considered as markers of the microspore embryogenic pathway, but less is known about others developmental programmes followed by the microspore in vitro after both, inductive and non-inductive conditions. Low-temperature processing of the samples, cytochemical and immunocytochemical approaches to identify various cell components were performed. Differences in specific cellular features such as cellular size and shape, nuclear architecture, starch accumulation, presence of vacuoles and ribosomal population were studied to characterize sequential stages of microspore embryogenesis and other pathways occurring in vitro. The presence of abundant starch grains in a defined cytoplasmic region appeared as a specific feature of the in vitro gametophytic development, as well as of the non-induced microspores of in vitro cultures under embryogenic-inductive conditions.  相似文献   

5.
In wheat (Triticum aestivum L.), water deficit during meiosis in the microspore mother cells (MMCs) induces pollen abortion, resulting in the failure of fertilization and a reduction in grain set. In stressed plants, meiosis in MMCs proceeds normally but subsequent pollen development is arrested. Unlike normal pollen grains, which accumulate starch during the late maturation phase, stress-affected anthers contain pollen grains with little or no starch. Stress also alters the normal distribution of starch in the anther wall and connective tissue. To determine how starch biosynthesis is regulated within the developing anthers of stressed plants, we studied the expression of ADP-glucose pyrophosphorylase (AGP), which catalyzes the rate limiting step of starch biosynthesis. Two partial-length cDNAs corresponding to the large subunit of AGP were amplified by RT-PCR from anther RNA, and used as probes to monitor AGP expression in developing anthers of normal and water-stressed plants. These clones, WAL1 and WAL2, had identical deduced amino acid sequences and shared 96% sequence identity at the nucleic acid level. In normal anthers, AGP expression was biphasic, indicating that AGP expression is required for starch biosynthesis both during meiosis and later during pollen maturation. AGP expression in stressed anthers was not affected during the first phase of starch accumulation, but was strongly inhibited during the second phase. We conclude from these results that the reduced starch deposition later in the development of stressed pollen could be the result of a lower expression of AGP. However, this inhibition of AGP expression is unlikely to be the primary cause of male sterility because anatomical symptoms of pollen abortion are observed prior to the time when AGP expression is inhibited.  相似文献   

6.
RNA synthesis during pollen embryogenesis in cultured anther segments of Hyoscyamus niger (henbane) has been followed by autoradiography of 3H-uridine incorporation. Embryogenic divisions were initiated in binucleate pollen grains in which the generative nucleus or both generative and vegetative nuclei synthesized RNA. When the first haploid mitosis in culture resulted in pollen grains with two nearly identical nuclei, those in which both nuclei synthesized RNA became embryogenic. Binucleate pollen grains in which 3H-uridine incorporation was confined exclusively to the vegetative nucleus gradually became starch-filled and nonembryogenic. Based on the degree of involvement of the vegetative nucleus in embryoid formation, some differences were noted between the counts of autoradiographic silver grains over cells cut off by the generative and vegetative nuclei during progressive embryogenesis. The possible significance of RNA synthesis in the nuclei of binucleate pollen grains in determining the pathway of embryogenic divisions is discussed.  相似文献   

7.
Microspore derived (MS-)embryogenesis and zygotic embryogenesis of Brassica napus L. cv. Topas were investigated by light and scanning electron microscopy to reveal the expression of polarity during the transition phase from globular to heart and torpedo shape. During the first 5 days of MS-embryo formation, the cell wall of the former microspores remained intact and a globular mass of cells developed within. Pollen walls ruptured after 5 days of culture; embryos proceeded through heart-shape and torpedo-shape stages within 15 days in a way comparable to, but faster than observed during zygotic embryogenesis. Expression of polarity in globular and elongating MS-embryos was analyzed by detection of the distribution of activated calmodulin as well as of free cytosolic calcium by using confocal scanning laser microscopy, and by the detection of starch. Calmodulin was evenly distributed in globular embryos and only exhibited clear polar distribution in elongated embryos. Free cytosolic Ca2+ accumulated in the protoderm of globular embryos and in the central cylinder of torpedo shaped embryos, but never showed polar distribution. Accumulation of starch granules at the root poles of both sexual as well as MS-embryos, however, indicated polar distribution before the transition from globular to heart shape stage. Since the local rupture of the pollen wall of 6-day-old MS-embryos was never preceded by the decrease of starch at that site, it is likely that the rupture of the pollen wall plays an important role in the local activation of cell metabolism and thus in the determination of the polarity axis in MS-embryos.  相似文献   

8.
Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum.  相似文献   

9.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

10.
Total and polysome-bound ribosomes and the uptake and incorporation of3H-uridine and14C-leucine were examined in dividing microspores and in pollen grains isolated from anthers of 6 different developmental stages. Direct evidence was obtained that the formation of cytoplasm of the vegetative cell following microspore division is related to a rapid activation of RNA and protein synthesis and of ribosomes in differentiating pollen. Total ribosomes associated with gametophytic programme rose about 10times and the process of differentiation was accompanied by a rapid increase in uptake capacity of pollen grains for both uridine and leucine. Pollen development after cytoplasm synthesis and starch deposition continued by pollen maturation, which was characterized by a decline in RNA synthesis, dissociation of polysomes and by a further rise of transport activity of pollen grain wall for exogenous substrates, indicating probable pollen adaptation for utilization of metabolites from the degenerating tapetal cytoplasm.  相似文献   

11.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

12.
Summary The pattern of RNA synthesis during maturation and germination of pollen grains ofHyoscyamus niger was studied using3H-uridine autoradiography. Incorporation of label during pollen maturation was periodic with peak RNA synthesis occurring in the uninucleate, nonvacuolate pollen grains and in the vegetative cell of the bicellular pollen grains. During the early stages of germination, isotope incorporation occurred predominantly in the nucleus of the vegetative cell with little or no incorporation in the generative cell. With the appearance of the pollen tube, incorporation of3H-uridine in the vegetative cell nucleus decreased and completely disappeared at later stages of germination. No incorporation of isotope was observed in the sperms formed in the pollen tube by the division of the generative cell. From a comparison of the results of this study with those of previous works on RNA synthesis during pollen embryogenesis in cultured anthers ofH. niger, it is concluded that in contrast to embryogenic development, there is no requirement for sustained RNA synthesis by the generative cell nucleus for normal gametophytic development.  相似文献   

13.
Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2–3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3–4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3–5 mm bud stages, with the SAD and EAR gene products detected in 4–7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.  相似文献   

14.
15.
Starches extracted from most plant species are phosphorylated. α-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion ( legwd::Ds ) in the tomato GWD ( LeGWD ) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds . Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog ( StGWD ) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits.  相似文献   

16.
In the cattail Typha latifolia the four haploid products of meiosis remain attached and form the flat tetrad of pollen grains. Gametophytic lethals arisen de novo in diploid cells of sporophyte must manifest themselves as pollen tetrads with two dead grains. This could allow to estimate the rate of recessive lethals arresting pollen grain development. We studied pollen samples collected from 44 sprouts in two populations in the vicinity of Novosibirsk. The anomalous tetrads T1, T2, T3, and T4 carrying one, two, three, and four dead grains, respectively, were detected in each sampled individual. The mean frequency of all anomalous tetrads in the two populations was 3.4% and 8.7%. The frequencies of tetrad classes varied widely among the individuals with correlation coefficient up to 0.94, but their ratios remained nearly constant. The majority of anomalous tetrads were presented by T1 and T2 classes (their sum comprising 72.7 and 74.0% in two populations), T1 being a little more abundant. The observed pattern of frequencies of tetrads with dead grains can be explained by errors of male meiosis such as chromosome non-disjunction in both meiotic divisions. The tetrads with two dead pollen grains may result mostly from non-disjunction in anaphase I, and those with one pollen grain from non-disjunction in anaphase II, thus making tetrad analysis ineffective for estimating the rate of gametophytic lethals.  相似文献   

17.
Pacini E  Jacquard C  Clément C 《Planta》2011,234(2):217-227
Vacuoles of several types can be observed in pollen throughout its development. Their physiological significance reflects the complexity of the biological process leading to functional pollen grains. Vacuolisation always occurs during pollen development but when ripe pollen is shed the extensive translucent vacuoles present in the vegetative parts in previous stages are absent. Vacuole functions vary according to developmental stage but in ripe pollen they are mainly storage sites for reserves. Vacuoles cause pollen to increase in size by water accumulation and therefore confer some degree of resistance to water stress. Modalities of vacuolisation occur in pollen in the same manner as in other tissues. In most cases, autophagic vacuoles degrade organelles, as in the microspore after meiosis, and can be regarded as cytoplasm clean-up following the transition from the diploid sporophytic to the haploid gametophytic state. This also occurs in the generative cell but not in sperm cells. Finally, vacuoles have a function when microspores are used for pollen embryogenesis in biotechnology being targets for stress induction and afterwards contributing to cytoplasmic rearrangement in competent microspores.  相似文献   

18.
In indica rice, the HongLian (HL)-type combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) is widely used for the production of commercial hybrid seeds in China, Laos, Vietnam and other Southeast Asian countries. Generally, any member of the gametophytic fertility restoration system, 50% of the pollen in hybrid F(1) plants displays recovered sterility. In this study, however, a HL-type hybrid variety named HongLian You6 had approximately 75% normal (viable) pollen rather than the expected 50%. To resolve this discrepancy, several fertility segregation populations, including F(2) and BC(1)F(1) derived from the HL-CMS line Yuetai A crossed with the restorer line 9311, were constructed and subjected to genetic analysis. A gametophytic restoration model was discovered to involve two non-allelic nuclear restorer genes, Rf5 and Rf6. The Rf5 had been previously identified using a positional clone strategy. The Rf6 gene represents a new restorer gene locus, which was mapped to the short arm of chromosome 8. The hybrid F(1) plants containing one restorer gene, either Rf5 or Rf6, displayed 50% normal pollen grains with I(2)-KI solution; however, those with both Rf5 and Rf6 displayed 75% normal pollens. We also established that the hybrid F(1) plants including both non-allelic restorer genes exhibited an increased stable seed setting when subjected to stress versus the F(1) plants with only one restorer gene. Finally, we discuss the breeding scheme for the plant gametophytic CMS/Rf system.  相似文献   

19.
Continuous exposure of tomato 'Trust' to high temperatures (day/night temperatures of 32/26 degrees C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism in various parts of the anther during its development. Under control, favourable temperature conditions (28/22 degrees C), starch accumulated in the pollen grains, where it reached a maximum value 3 d before anthesis; it then diminished towards anthesis. During anther development, the concentration of total soluble sugars gradually increased in the anther walls and in the pollen grains (but not in the locular fluid), reaching a maximum at anthesis. Continuous exposure of the plants to high temperatures (32/26 degrees C) prevented the transient increase in starch concentration and led to decreases in the concentrations of soluble sugars in the anther walls and the pollen grains. In the locular fluid, however, a higher soluble sugar concentration was detected under the high-temperature regime throughout anther development. These results suggest that a major effect of heat stress on pollen development is a decrease in starch concentration 3 d before anthesis, which results in a decreased sugar concentration in the mature pollen grains. These events possibly contribute to the decreased pollen viability in tomato.  相似文献   

20.
Starch-synthesizing Enzymes in the Endosperm and Pollen of Maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Two mutations, amylose-extender and waxy, which affect the proportion of amylose and amylopectin of starch synthesized in the endosperm of maize (Zea mays L.) seeds, are also expressed in the pollen. However, most mutations that affect starch synthesis in the maize endosperm are not expressed in the pollen. In an attempt to understand the nonconcordance between the endosperm and pollen, extracts of mature pollen grains were assayed for a number of the enzymes possibly implicated in starch synthesis in the endosperm. Sucrose synthetase (sucrose-UDP glucosyl transferase, EC 2.4.1.13) activity was not detectable in either mature or immature pollen grains of nonmutant maize, but both bound and soluble invertase (EC 3.2.1.26) exhibited much greater specific activity (per milligram protein) in pollen extracts than in 22-day-old endosperm extracts. Phosphorylase (EC 2.4.1.1) activity was also higher in pollen than in endosperm extracts. ADP-Glucose pyrophosphorylase (EC 2.7.7.27) activity was much lower in pollen than endosperm extracts, but mutations that drastically reduced ADP-glucose pyrophosphorylase activity in the endosperm (brittle-2 and shrunken-2) did not markedly affect enzymic activity in the pollen. Specific activities of other enzymes implicated in starch synthesis were similar in endosperm and pollen extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号