首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
4-Amino-3,3′-dichloro-5,4′-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3′-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3′-dichloro-4,4′-dinitrobiphenyl (DDB), and 4-amino-3,3′-dichloro-4′-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4 ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.  相似文献   

2.
4,4′-Methylenebis-(2-chloroaniline) (MOCA) is used in the manufacture of polyurethane. The IARC classifies MOCA as a probable human carcinogen. Suggested changes to guidelines for health surveillance of MOCA-exposed workers in Australia include a reduction in acceptable levels of urinary MOCA to below 15 μmol/mol creatinine. Twelve male workers aged 24 and 42 years were recruited into this study from four work locations where MOCA is used. Exfoliated urothelial cells from prework urine samples on a midweek work day were assessed for micronucleus (MN) frequencies. Postwork urine samples were analysed for total MOCA. Blood samples collected on the same day were cultured for 96 h and cytochalasin-B-blocked cells were scored for MN. Eighteen male control subjects (23–59 years) provided corresponding urine and blood samples. Median urinary MOCA concentrations were 6.5 μmol/mol creatinine (range 0.4–48.6 μmol/mol creatinine) in postwork samples of MOCA-exposed workers. MOCA was not detected in urine of control workers. Mean MN frequencies were higher in urothelial cells and lymphocytes of MOCA workers (14.27±0.56 and 13.25±0.48 MN/1000 cells) than in controls (6.90±0.18 and 9.24±0.29 MN/1000 cells). The mean number of micronucleate cells was also higher in both tissues of exposed workers (9.69±0.32 and 8.54±0.14 MN cells/1000 cells) than in controls (5.18±0.11 and 5.93±0.13 MN cells/1000). There was no correlation between postwork urinary MOCA concentrations and MN frequencies in either tissue. This study suggests that exposures to MOCA in South Australia are similar to those of a decade ago and are at levels similar to those currently acceptable in Australia. These are associated with genotoxic effects in urothelial cells and peripheral blood lymphocytes. It may be prudent to reduce MOCA exposures in line with proposed guidance values.  相似文献   

3.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

4.
Di(indol‐3‐yl)methane (=3,3′‐methanediyldi(1H‐indole), DIM, 1 ) is a known weakly antitumoral compound formed by digestion of indole‐3‐carbinol (=1H‐indol‐3‐ylmethanol), an ingredient of various Brassica vegetables. Out of a series of nine fluoroaryl derivatives of 1 , three pentafluorophenyl derivatives 2c , 2h , and 2i were identified that exhibited a two to five times greater anti‐proliferative effect and an increased apoptosis induction when compared with 1 in the following carcinoma cell lines: BxPC‐3 pancreas, LNCaP prostate, C4‐2B prostate, PC3 prostate and the triple‐negative MDA‐MB‐231 breast carcinoma. Compound 2h was particularly efficacious against androgen‐refractory C4‐2B prostate cancer cells (IC50=6.4 μm ) and 2i against androgen‐responsive LNCaP cells (IC50=6.2 μm ). In addition, 2c and 2h exhibited distinct activity in three cancer cell lines resistant to 1 .  相似文献   

5.
6.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

7.
8.
In addition to the neurotoxic effects of β, β′-iminodipropionitrile (IDPN) which have been previously reported by other investigators, the olfactory toxicity of this compound has recently been uncovered in this laboratory. Due to the apparently conflicting observations that the IDPN-induced lesion in the olfactory mucosa is very focal in nature (suggesting site-specific activation) and the observation by other investigators that the behavioral effects of IDPN appear to be due to the parent compound, we initiated studies into the possible role of the cytochrome P450 enzymes in the olfactory toxicity of IDPN. Immunohistochemical studies with antibodies raised against several different P450 isoforms revealed good correlation between IDPN-induced olfactory mucosal degeneration and the localization of a protein immunoreacting with an antibody to P450 2E1. Enzymatic studies revealed that there is approximately fivefold more ρ-nitrophenol hydroxylation activity in the olfactory mucosa than in the liver on a per milligram microsomal protein basis. Administration of 1% acetone in the drinking water increased the levels of olfactory mucosal 2E1, and the increase in enzyme levels corresponded to increased olfactory toxicity of IDPN; inhibition of P450 activities with either metyrapone or carbon tetrachloride eliminated or significantly decreased the olfactory toxicity of IDPN, respectively. These studies suggest a role for cytochrome P450, specifically the 2E1 isoform, in the activation of IDPN within the nasal mucosa.  相似文献   

9.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

10.
NMR spectroxcopy has been used to compare the interaction of ephedrine and N-methylephedrine with β-cyclodextrin, heptakis(2,3-di-O-acetyl)β-cyclodextrin, heptakis(6-O-acetyl)β-cyclodextrin. The stoichiometry of the complexes formed between all three cyclodextrins and N-methylephedrine was found to be 1:1 by UV spectroscopy by means of the Job technique. NMR spectra of the single enantiomers of ephedrine and N-methylephedrine in the presence of all three cyclodextrins gave information about the parts of the ligands which interact differently with the host molecules and may be responsible for the chiral discrimination. To quantify the complex stabilities, binding constants were calculated from the changes in the chemical shifts of the ligand signals upon complexation. Analyses of the coupling constants of both species showed that no significant conformational change occurs upon complexation. ROESY spectra of these optical isomers with all three cyclodextrins provided detailed information about the geometry of the complexes. Different intermolecular cross-peaks between the individual isomers of ephedrine and N-Methylephedrine were found for native β-cyclodextrin and its 2,3-diacetylated derivative but not for 6-acetyl cyclodextrin. Analyses of the intramolecular cross-signals of the ligands confirmed that no significant conformational change occurs upon complexation. Chirality 9:211–219, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC50=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC50=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[β- -arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay [Food Chem. Toxicol. 32 (1994) 443; Mutat. Res. 341 (1995) 303].  相似文献   

12.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
To investigate and analyze induction of phenotypic and functional maturation of murine DCs by GLP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DCs, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acid phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. It was found that GLP induced phenotypic maturation, as evidenced by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside the DCs, which occurs when phagocytosis of DCs decreased, and antigen presentation increased with maturation. Finally, GLP increased the production of IL-12.These data reveals that GLP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings that require a boosting of the immune response. Therefore concluded that GLP can exert positive induction to murine DCs at the used concentration.  相似文献   

14.
《Free radical research》2013,47(9):1167-1177
Abstract

Melatonin has been known to affect a variety of astrocytes functions in many neurological disorders but its mechanism of action on neuroinflammatory cascade and alpha-7 nicotinic acetylcholine receptor (α7-nAChR) expression are still not properly understood. Present study demonstrated that treatment of C6 cells with melatonin for 24 hours significantly decreased lipopolysaccharide (LPS) induced nitrative and oxidative stress, expressions of cyclooxigenase-2 (COX-2), inducible nitric-oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Melatonin also modulated LPS-induced mRNA expressions of α7-nAChR and inflammatory cytokine genes. Furthermore, melatonin reversed LPS-induced changes in C/EBP homologous protein 10 (CHOP), microsomal prostaglandin E synthase-1(mPGES-1) and phosphorylated p38 mitogen activated protein kinase (P-p38). Treatment with pyrrolidine dithiocarbamate (PDTC) inhibited α7-nAChR mRNA expression in LPS-induced C6 cells. Our findings explored anti-neuroinflammatory action of melatonin, which may suggests its beneficial roles in the neuroinflammation associated disorders.  相似文献   

15.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

16.
Thirty-four polyphenolic substances in methanol extracts of the fruits of Terminalia bellerica, Terminalia chebula and Terminalia horrida, three plants used in Egyptian folk medicine, were initially identified by HPLC-ESI-MS and quantitated by analytical HPLC after column chromatography on Sephadex LH-20. After purification by semi-preparative HPLC the compounds were identified by their mass and fragmentation patterns using ESI-MS-MS. For several compounds detailed 1H/13C NMR analysis at 600 MHz was performed. Two polyphenolics, namely 4-O-(4″-O-galloyl-α-l-rhamnopyranosyl)ellagic acid and 4-O-(3″,4″-di-O-galloyl-α-l-rhamnopyranosyl)ellagic acid were identified by NMR. Antioxidant capacities of the raw fruit extracts and the major isolated substances were determined using the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), oxygen radical absorbance capacity (ORAC) and ferric reducing ability of plasma (FRAP) in vitro assays and indicated that chebulic ellagitannins have high activity which may correlate with high potential as cancer chemopreventive agents. Therefore, further studies (metabolism, bioavailability and toxicity) of the polyphenolics in Terminalia species using preclinical models and in vivo human intervention trials are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号