首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of differentiation regulators of the A-factor group in representatives of Nocardia and Nocardia-like actinomyces: N. asteroides, N. brasiliensis, Amycolatopsis mediterranei and "Streptomyces listeri" was observed. The effect of the regulators of different nature (barbital, A-factor and B-factor) on biosynthesis of rifamycin B by A. mediterranei strains was studied. It was shown that the A-factor stimulated rifamycin B production in the adifferentiated low active variant isolated from a natural population of the active strain VNIIA 1713 of the rifamycin B-producing culture. B-Factor insignificantly inhibited biosynthesis of rifamycin B in the studied strains of A. mediterranei.  相似文献   

2.
Amycolatopsis mediterranei produces an important antibiotic rifamycin, the biosynthesis of which involves many unusual modifications. Previous work suggested a putative P450 enzyme encoded by rif16 within the rifamycin biosynthetic gene cluster (rif) was required for the conversion of the intermediate rifamycin SV into the end product rifamycin B. In this study, we genetically proved that a putative transketolase encoded by rif15 is another essential enzyme for this conversion. Expression of merely rif15 and rif16 in a rif cluster null mutant of A. mediterranei U32 was able to convert rifamycin SV into B. However, this Rif15- and Rif16-mediated conversion was only detected in intact cells of A. meidterranei, but not in Streptomyce coelicolor or Mycobacterium smegmatis, suggesting that yet-characterized gene(s) in A. mediterranei other than those encoded by the rif cluster should be involved in this process.  相似文献   

3.
The gene rif orf14 in the rifamycin biosynthetic gene cluster of Amycolatopsis mediterranei S699, producer of the antitubercular drug rifamycin B, encodes a protein of 272 amino acids identified as an AdoMet: 27-O-demethylrifamycin SV methyltransferase. Frameshift inactivation of rif orf14 generated a mutant of A. mediterranei S699 that produces no rifamycin B, but accumulates 27-O-demethylrifamycin SV (DMRSV) as the major new metabolite, together with a small quantity of 27-O-demethyl-25-O-desacetylrifamycin SV (DMDARSV). Heterologous expression of rif orf14 in Escherichia coli yielded a 33.8-kDa polyhistidine-tagged polypeptide, which efficiently catalyzes the methylation of DMRSV to rifamycin SV, but not that of DMDARSV or rifamycin W. 27-O-Demethylrifamycin S was methylated poorly, if at all, by the enzyme to produce rifamycin S. The purified enzyme does not require a divalent cation for catalytic activity. While Ca(2+) or Mg(2+) inhibits the enzyme activity slightly, Zn(2+), Ni(2+), and Co(2+) are strongly inhibitory. The K(m) values for DMRSV and S-adenosyl-L-methionine (AdoMet) are 18.0 and 19.3 microM, respectively, and the K(cat) is 87s(-1). The results indicate that DMRSV is a direct precursor of rifamycin SV and that acetylation of the C-25 hydroxyl group must precede the methylation reaction. They also suggest that rifamycin S is not the precursor of rifamycin SV in rifamycin B biosynthesis, but rather an oxidative shunt-product.  相似文献   

4.
Production of rifamycin SV using mutant strains of Amycolatopsis mediterranei (MTCC17) has been studied. Attempts were made to increase the productivity of rifamycin SV by ultraviolet radiation and specific screening programmes for selection of superior producers. Among 20 morphologically variant mutants of A. mediterranei MTCC17 isolated, four mutants showed increased resistance to the rifamycin SV. These selected mutant isolates increased the yield of rifamycin SV from 2000 to 3250mg/l.  相似文献   

5.
The actinomycete Amycolatopsis mediterranei produces the commercially and medically important polyketide antibiotic rifamycin, which is widely used against mycobacterial infections. The rifamycin biosynthetic (rif) gene cluster has been isolated, cloned and characterized from A. mediterranei S699 and A. mediterranei LBGA 3136. However, there are several other strains of A. mediterranei which also produce rifamycins. In order to detect the variability in the rif gene cluster among these strains, several strains were screened by PCR amplification using oligonucleotide primers based on the published DNA sequence of the rif gene cluster and by using dEBS II (second component of deoxy-erythronolide biosynthase gene) as a gene probe. Out of eight strains of A. mediterranei selected for the study, seven of them showed the expected amplification of the DNA fragments whereas the amplified DNA pattern was different in strain A. mediterranei DSM 46095. This strain also showed striking differences in the banding pattern obtained after hybridization of its genomic DNA against the dEBS II probe. Initial cloning and characterization of the 4-kb DNA fragment from the strain DSM 46095, representing a part of the putative rifamycin biosynthetic cluster, revealed nearly 10% and 8% differences in the DNA and amino acid sequence, respectively, as compared to that of A. mediterranei S699 and A. mediterranei LBGA 3136. The entire rif gene cluster was later cloned on two cosmids from A. mediterranei DSM 46095. Based on the partial sequence analysis of the cluster and sequence comparison with the published sequence, it was deduced that among eight strains of A. mediterranei, only A. mediterranei DSM 46095 carries a novel rifamycin biosynthetic gene cluster.  相似文献   

6.
To investigate a novel branch of the shikimate biosynthesis pathway operating in the formation of 3-amino-5-hydroxybenzoic acid (AHBA), the unique biosynthetic precursor of rifamycin and related ansamycins, a series of target-directed mutations and heterologous gene expressions were investigated in Amycolatopsis mediterranei and Streptomyces coelicolor. The genes involved in AHBA formation were inactivated individually, and the resulting mutants were further examined by incubating the cell-free extracts with known intermediates of the pathway and analyzing for AHBA formation. The rifL, -M, and -N genes were shown to be involved in the step(s) from either phosphoenolpyruvate/d-erythrose 4-phosphate or other precursors to 3,4-dideoxy-4-amino-d-arabino-heptulosonate 7-phosphate. The gene products of the rifH, -G, and -J genes resemble enzymes involved in the shikimate biosynthesis pathway (August, P. R., Tang, L., Yoon, Y. J., Ning, S., Müller, R., Yu, T.-W., Taylor, M., Hoffmann, D., Kim, C.-G., Zhang, X., Hutchinson, C. R., and Floss, H. G. (1998) Chem. Biol. 5, 69-79). Mutants of the rifH and -J genes produced rifamycin B at 1% and 10%, respectively, of the yields of the wild type; inactivation of the rifG gene did not affect rifamycin production significantly. Finally, coexpressing the rifG-N and -J genes in S. coelicolor YU105 under the control of the act promoter led to significant production of AHBA in the fermented cultures, confirming that seven of these genes are indeed necessary and sufficient for AHBA formation. The effects of deletion of individual genes from the heterologous expression cassette on AHBA formation duplicated the effects of the genomic rifG-N and -J mutations on rifamycin production, indicating that all these genes encode proteins with catalytic rather than regulatory functions in AHBA formation for rifamycin biosynthesis by A. mediterranei.  相似文献   

7.
Rifamycin SV contains one amide nitrogen atom at its C(7)N moiety. Earlier labeling studies suggested that nitrogen might be incorporated from a pathway involved in a molybdenum-dependent nitrate reductase. However, no genetic evidence is available thus far. The structural gene moeA, which is involved in molybdopterin synthesis in various organisms, has been cloned from rifamycin SV-producing Amycolatopsis mediterranei strain U32. The amino acid sequence deduced from the moeA gene showed significant similarity to members of the MoeA protein family and contains all the structural features that are highly conserved in the putative functional domains of MoeA proteins. Southern hybridization showed that there is only one moeA gene in the A. mediterranei genome. To further investigate the possible physiological function of the moeA gene, a double crossover gene replacement was achieved by inserting an aparmycin resistance gene into moeA in the A. mediterranei U32 chromosome. Phenotype analysis showed that the moeA gene is required for A. mediterranei growth in a minimal medium with nitrate as sole nitrogen source, possibly because nitrate reductase activity is diminished due to disruption of the moeA gene. Compared to the wild type strain, moeA-disrupted mutants lost 95% of their rifamycin SV production capacity in complex fermentation media. The results demonstrate that the moeA gene is necessary for rifamycin SV production in A. mediterranei, and that the nitrogen assimilation pathway involved in nitrate reductase is the major pathway for the genesis of the amide nitrogen atom in the rifamycin SV molecule.  相似文献   

8.
Phylogenetic analysis of the ketosynthase (KS) gene sequences of marine sponge-derived Salinispora strains of actinobacteria indicated that the polyketide synthase (PKS) gene sequence most closely related to that of Salinispora was the rifamycin B synthase of Amycolatopsis mediterranei. This result was not expected from taxonomic species tree phylogenetics using 16S rRNA sequences. From the PKS sequence data generated from our sponge-derived Salinispora strains, we predicted that such strains might synthesize rifamycin-like compounds. Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis was applied to one sponge-derived Salinispora strain to test the hypothesis of rifamycin synthesis. The analysis reported here demonstrates that this Salinispora isolate does produce compounds of the rifamycin class, including rifamycin B and rifamycin SV. A rifamycin-specific KS primer set was designed, and that primer set increased the number of rifamycin-positive strains detected by PCR screening relative to the number detectable using a conserved KS-specific set. Thus, the Salinispora group of actinobacteria represents a potential new source of rifamycins outside the genus Amycolatopsis and the first recorded source of rifamycins from marine bacteria.  相似文献   

9.
The effect of different organic nitrogen compounds on the production of rifamycin SV by Amycolatopsis mediterranei MV35R and their optimum concentrations have been described. Results obtained indicate that rifamycin SV production increased from 4020 mg l-1 to 4575 mg l-1 when organic nitrogen compound uracil was added at 0.2% (w/v) concentration to the fermentation medium by A. mediterranei MV35R. The rifamycin SV yield was enhanced by 505 mg l-1 using uracil (2 g l-1) when compared with barbital.  相似文献   

10.
A process for the production of erythromycin aglycone analogues has been developed by combining classical strain mutagenesis techniques with modern recombinant DNA methods and traditional process improvement strategies. A Streptomyces coelicolor strain expressing the heterologous 6-deoxyerythronolide B (6-dEB) synthase (DEBS) for the production of erythromycin aglycones was subjected to random mutagenesis and selection. Several strains exhibiting 2-fold higher productivities and reaching >3 g/L total macrolide aglycones were developed. These mutagenized strains were cured of the plasmid carrying the DEBS genes and a KS1 degrees mutant DEBS operon was introduced for the production of novel analogues when supplemented with a synthetic diketide precursor. The strains expressing the mutant DEBS were screened for improved 15-methyl-6-dEB production, and the best clone, strain B9, was found to be 50% more productive as compared to the parent host strain used for 15-methyl-6-dEB production. Strain B9 was evaluated in 5-L fermenters to confirm productivity in a scalable process. Although peak titers of 0.85 g/L 15-methyl-6-dEB by strain B9 confirmed improved productivity, it was hypothesized that the low solubility of 15-methyl-6-dEB limited productivity. The solubility of 15-methyl-6-dEB in water was determined to be 0.25-0.40 g/L, although higher titers are possible in fermentation medium. The incorporation of the hydrophobic resin XAD-16HP resulted in both the in situ adsorption of the product and the slow release of the diketide precursor. The resin-containing fermentation achieved 1.3 g/L 15-methyl-6-dEB, 50% higher than the resin-free process. By combining classical mutagenesis, recombinant DNA techniques, and process development, 15-methyl-6-dEB productivity was increased by over 100% in a scalable fermentation process.  相似文献   

11.
Amycolatopsis mediterranei S699 is an actinomycete that produces an important antibiotic, rifamycin B. Semisynthetic derivatives of rifamycin B are used for the treatment of tuberculosis, leprosy, and AIDS-related mycobacterial infections. Here, we report the complete genome sequence (10.2 Mb) of A. mediterranei S699, with 9,575 predicted coding sequences.  相似文献   

12.
The ATPase inhibitor Dio-9 effectively suppressed a number of physiological processes in a wild-type strain of Saccharomyces cerevisiae, X2180-1A. Low levels of the antibiotic inhibited cell growth, amino acid transport, hydrogen ion efflux, and ATPase activity. In addition, Dio-9 acted as a permeabilizing agent for the yeast plasma membrane. A mutant yeast strain, XC24, was selected on the basis of its ability to grow on minimal medium containing 200 μg/ml of Dio-9. Strain XC24 had acquired a pH-conditional ability to resist the permeabilizing effects of Dio-9. In addition, amino acid transport and hydrogen ion pumping exhibited a reduced senstivity to Dio-9 at low pH in the mutant strain. Strain XC24 was also resistant to the permeabilizing effects of the basic polymers protamine and deacylated chitin.  相似文献   

13.
The structural gene, pkmA, was cloned and sequenced from a rifamycin SV-producing Amycolatopsis mediterranei U32 strain. The N-terminal portion of the deduced amino acid sequence of pkmA showed significant similarity to the family of serine/threonine protein kinases. It contains all the structural features which are highly conserved in protein kinases, including the Gly-X-Gly-X-X-Gly motif of ATP binding and the essential amino acids known to be important for the recognition of the correct hydroxyamino acid in serine/threonine protein specific kinases. The protein possesses a region rich in Ala and Pro residues around the middle of pkmA open reading frame, which might be involved in the transmembrane function, as suggested by PhoA fusion protein analysis. The pkmA gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein, and the protein was found to have the activity of autophosphorylation. A double crossover gene replacement was achieved by inserting an aparmycin resistance gene into pkmA in A. mediterranei chromosomal DNA. The phenotypic analysis of the mutant suggested that pkmA gene is involved in carbon source-dependent pigment formation in A. mediterranei U32.  相似文献   

14.
中度嗜盐菌DTY1的鉴定及其耐盐机制的初步分析   总被引:7,自引:0,他引:7  
菌株DTY1分离自山西省五寨县柠条种植区盐碱土壤,可在0~1·2mol/LNaCl的浓度培养基上生长,最适生长温度32℃,最适pH7~10。通过形态观察,生理生化测定与16SrDNA序列分析,将该菌株鉴定为嗜碱芽孢杆菌(Bacillusalcalophilus)。高压液相色谱分析,DTY1菌株在常规LB培养液中能够产生1·40mg/g四氢嘧啶,且在最适盐浓度条件下,盐浓度越高单位干重菌体所产生的四氢嘧啶含量越高。通过PCR介导的方法从DTY1的基因组文库中克隆到四氢嘧啶合成基因ectB。该基因长度为1284bp,编码427个氨基酸的肽链。此肽链与B.haloduransC-125(BAB04638)中二氨基丁酸氨基转移酶同源性达81%。ectB基因可能存在典型的σ70启动子,而且在启动子间有一段明显的23bp的回文序列。  相似文献   

15.
利福霉素SV毒性低、疗效高、抗菌谱广,主要由地中海拟无枝酸菌发酵生产,其发酵过程属于耗氧发酵,供氧直接影响产物形成.为减少发酵过程氧限制影响,进一步提高利福霉素发酵产量,通过构建定向氧限制模型,将常温常压等离子体诱变和无水亚硫酸钠氧限制筛选模型相结合,建立了利福霉素生产菌株24孔板快速培养的高通量筛选方法,高效选育出能...  相似文献   

16.
A strain designated M866, producing kojic acid with a high yield, was obtained by combining induced mutation using ion beam implantation and ethyl methane sulfonate treatment of a wild type strain of Aspergillus oryzae B008. The amount of kojic acid produced by the strain M866 in a shaking flask was 40.2 g/L from 100 g/L of glucose, which was 1.7 times higher than that produced by wild strain (23.58 g/L). When the mixture of glucose and xylose was used as carbon source, the resulting kojic acid production was raised with the increasing of glucose ratios in the mixture. With concentrations of glucose at 75 g/L and xylose at 25 g/L mixed in the medium, the production of kojic acid reached 90.8 %, which was slightly lower than with glucose as the sole source of carbon. In addition, the kojic acid fermentation of the concentrated hydrolysate from corn stalk was also investigated in this study, the maximum concentration of kojic acid accumulated at the end of the fermentation was 33.1 g/L and this represents the yield based on reducing sugar consumed and the overall productivity of 0.36 g/g and 0.17 g/L/h, respectively.  相似文献   

17.
以琥珀酸放线杆菌Actinobacillus succinogenes F3—21为出发菌株,分别用吖啶黄、紫外线、紫外线.硫酸二乙酯和亚硝基胍进行诱变,产生突变菌库。用“96孔板培养-HPLC浓缩检测-厌氧瓶复筛”的模式筛选高产突变株。从1056株突变株中,筛选到一株高产菌株Ⅵ-10-C。连续传代10次,产酸水平不变。在5L发酵罐中补料分批发酵72h,Ⅵ-10-C产琥珀酸87.6g/L,生产强度1.22g/(L·h),糖酸转化率0.66g/g;琥珀酸产量比出发菌提高了30%。代谢通量与关键酶活性分析表明:相比于F3-21,Ⅵ-10-C发酵过程中从磷酸烯醇式丙酮酸节点处流向草酰乙酸的代谢流量增加了28.9%,相对应的磷酸烯醇式丙酮酸羧化激酶(PEPCK)酶活提高了23.5%。结果表明用“96孔板培养-HPLC浓缩检测-厌氧瓶复筛”的模式能快速有效筛选高产琥珀酸菌株。  相似文献   

18.
对地中海拟无枝菌酸菌U-32菌株的研究发现,像植物及真菌硝酸还原酶一样,地中海拟无枝菌酸菌U-32硝酸还原酶也是诱导酶,其合成受铵盐阻遏,受硝酸盐的诱导。氯霉素抑制实验的结果表明,该菌株硝酸还原酶的诱导涉及到蛋白质的新合成。钼和钨的竞争实验说明U-32菌株硝酸还原酶也为一钼酶。另外在离体实验中,发现硝酸还原酶活力受到KCN和NADH的抑制,但至今未能找到其生理电子供体。此外,U-32菌株硝酸还原酶也不表现类似于植物的黄递酶等组份酶活性。该菌株硝酸还原酶和其力复霉素产量有一定相关性,但两者确切的关系尚待研究。  相似文献   

19.
Three hyper 2-propanol producing strains were isolated from Singapore environment using an enrichment step and a high through-put screening step. The analysis of the amplified 16S rDNA revealed that the isolates belonged to Clostridium species and they were named as Clostridium sp. BT10-1, Clostridium sp. M10-1 and Clostridium sp. PU31-4. At 1 L scale, the 2-propanol titer of these positive strains was 1.6–2.1 times of that of Clostridium beijerinckii NRRL B593, which is so far the most efficient natural 2-propanol producer. The highest 2-propanol titer was achieved by isolate BT10-6 and it was 5.26 g/L (87.5 mM). These three positive strains BT10-6, M10-1 and PU31-4 consumed glucose almost completely in 40–48 h and gave 2-propanol productivity at 0.132, 0.118 and 0.087 g/L/h, respectively, which is 3.0–4.6 times of 0.029 g/L/h given by C. beijerinckii NRRL B593. Butanol was also produced by these positive strains with a slightly lower butanol titer and higher butanol productivity, compared to butanol control strain C. beijerinckii NCIMB 8052.  相似文献   

20.
【目的】3-羟基丙酸是一种重要的化学平台化合物,期望得到一株能够高产3-羟基丙酸的菌株。【方法】从土壤及粪便筛选并对得到的菌株进行鉴定和复合诱变。【结果】得到了一株能够利用丙酸发酵生产3-羟基丙酸的酵母Y-11,经生理生化鉴定及18S rDNA序列分析确定其为Candida sp.(假丝酵母)。以Y-11为出发菌株,经紫外-亚硝基胍-60Coγ复合诱变得到了突变性状稳定且可遗传的高产菌株5-13B,其3-羟基丙酸的产量为11.78 g/L,是出发菌株的2.46倍。【结论】对出发菌株和突变株的发酵特性进行了比较,结果表明突变株的3-羟基丙酸产量、对底物丙酸的转化率、产物3-羟基丙酸的积累性能及丙酸的耐受性均优于出发菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号