首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bcl-2 homology 3 (BH3) domain of prodeath Bcl-2 family members mediates their interaction with prosurvival Bcl-2 family members and promotes apoptosis. We report that survival factors trigger the phosphorylation of the proapoptotic Bcl-2 family member BAD at a site (Ser-155) within the BAD BH3 domain. When BAD is bound to prosurvival Bcl-2 family members, BAD Ser-155 phosphorylation requires the prior phosphorylation of Ser-136, which recruits 14-3-3 proteins that then function to increase the accessibility of Ser-155 to survival-promoting kinases. Ser-155 phosphorylation disrupts the binding of BAD to prosurvival Bcl-2 proteins and thereby promotes cell survival. These findings define a mechanism by which survival signals inactivate a proapoptotic Bcl-2 family member, and suggest a role for 14-3-3 proteins as cofactors that regulate sequential protein phosphorylation events.  相似文献   

2.
The Bcl-2 family protein BAD promotes apoptosis by binding through its BH3 domain to Bcl-x(L) and related cell death suppressors. When BAD is phosphorylated on either Ser(112) or Ser(136), it forms a complex with 14-3-3 in the cytosol and no longer interacts with Bcl-x(L) at the mitochondria. Here we show that phosphorylation of a distinct site Ser(155), which is at the center of the BAD BH3 domain, directly suppressed the pro-apoptotic function of BAD by eliminating its affinity for Bcl-x(L). Protein kinase A functioned as a BAD Ser(155) kinase both in vitro and in cells. BAD Ser(155) was found to be a major site of phosphorylation induced following stimulation by growth factors and prevented by protein kinase A inhibitors but not by inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Growth factors inhibited BAD-induced apoptosis in both a Ser(112)/Ser(136)- and a Ser(155)-dependent fashion. Thus, growth factors engage an anti-apoptotic signaling pathway that inactivates BAD by direct modification of its BH3 cell death effector domain.  相似文献   

3.
BAD is a Bcl-2 homology domain 3 (BH3)-only proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Binding of BAD to mitochondria is thought to be exclusively mediated by its BH3 domain. We show here that BAD binds to lipids with high affinities, predominantly to negatively charged phospholipids, such as phosphatidylserine, phosphatidic acid, and cardiolipin, as well as to cholesterol-rich liposomes. Two lipid binding domains (LBD1 and LBD2) with different binding preferences were identified, both located in the C-terminal part of the BAD protein. BAD facilitates membrane translocation of Bcl-XL in a process that requires LBD2. Integrity of LBD1 and LBD2 is also required for proapoptotic activity in vivo. Phosphorylation of BAD does not affect membrane binding but renders BAD susceptible to membrane extraction by 14-3-3 proteins. BAD can be removed efficiently by 14-3-3zeta, -eta, -tau and lesxs efficiently by other 14-3-3 isoforms. The assembled BAD.14-3-3 complex exhibited high affinity for cholesterol-rich liposomes but low affinity for mitochondrial membranes. We conclude that BAD is a membrane-associated protein that has the hallmarks of a receptor rather than a ligand. Lipid binding is essential for the proapoptotic function of BAD in vivo. The data support a model in which BAD shuttles in a phosphorylation-dependent manner between mitochondria and other membranes and where 14-3-3 is a key regulator of this relocation. The dynamic interaction of BAD with membranes is tied to activation and membrane translocation of Bcl-XL.  相似文献   

4.
Signaling pathways between cell surface receptors and the BCL-2 family of proteins regulate cell death. Survival factors induce the phosphorylation and inactivation of BAD, a proapoptotic member. Purification of BAD kinase(s) identified membrane-based cAMP-dependent protein kinase (PKA) as a BAD Ser-112 (S112) site-specific kinase. PKA-specific inhibitors blocked the IL-3-induced phosphorylation on S112 of endogenous BAD as well as mitochondria-based BAD S112 kinase activity. A blocking peptide that disrupts type II PKA holoenzyme association with A-kinase-anchoring proteins (AKAPs) also inhibited BAD phosphorylation and eliminated the BAD S112 kinase activity at mitochondria. Thus, the anchoring of PKA to mitochondria represents a focused subcellular kinase/substrate interaction that inactivates BAD at its target organelle in response to a survival factor.  相似文献   

5.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen in cigarette smoke. NNK cannot only induce DNA damage but also promotes the survival of human lung cancer cells. Protein kinase C (PKC)iota is an atypical PKC isoform and plays an important role in cell survival, but the downstream survival substrate(s) is not yet identified. Bad, a proapoptotic BH3-only member of Bcl2 family, is co-expressed with PKCiota in both small cell lung cancer and non-small cell lung cancer cells. We discovered that NNK potently induces multisite Bad phosphorylation at Ser-112, Ser-136, and Ser-155 via activation of PKCiota in association with increased survival of human lung cancer cells. Purified, active PKCiota can directly phosphorylate both endogenous and recombinant Bad at these three sites and disrupt Bad/Bcl-XL binding in vitro. Overexpression of PKCiota results in an enhancement of Bad phosphorylation. NNK also stimulates activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the PKC inhibitor (staurosporine) or a Src-specific inhibitor (PP2) can block NNK-induced Bad phosphorylation and promote apoptotic cell death. The beta-adrenergic receptor inhibitor propranolol blocks both NNK-induced activation of PKCiota and Bad phosphorylation, indicating that NNK-induced Bad phosphorylation occurs at least in part through the upstream beta-adrenergic receptor. Mechanistically, NNK-induced Bad phosphorylation prevents its interaction with Bcl-XL. Because the specific depletion of PKCiota by RNA interference inhibits both NNK-induced Bad phosphorylation and survival, this confirms that PKCiota is a necessary component in NNK-mediated survival signaling. Collectively, these findings reveal a novel role for PKCiota as an NNK-activated physiological Bad kinase that can directly phosphorylate and inactivate this proapoptotic BH3-only protein, which leads to enhanced survival and chemoresistance of human lung cancer cells.  相似文献   

6.
Using a set of specific kinase inhibitors we demonstrate that Raf kinases phosphorylate BAD at serines 112, 136 and 155 in vivo and in vitro. Exploring unexpected lipid binding properties of BAD we identified two lipid-binding domains located in its C-terminal part. Furthermore, we believe to have uncovered how phosphorylation-driven interaction with 14-3-3 regulates intracellular membrane localization of BAD. Observed activity of lipid-bound BAD as a membrane receptor for Bcl-XL opens new horizons in apoptosis research.  相似文献   

7.
We studied the roles of the phosphatidylinositol 3-kinase (PI-3K)-Akt-BAD cascade, ERK-BAD cascade, and Akt-Raf-1 cascade in the paclitaxel-resistant SW626 human ovarian cancer cell line, which lacks functional p53. Treatment of SW626 cells with paclitaxel activates Akt and ERK with different time frames. Interference with the Akt cascade either by treatment with PI-3K inhibitor (wortmannin or LY294002) or by exogenous expression of a dominant negative Akt in SW626 cells caused decreased cell viability following treatment with paclitaxel. Interference with the ERK cascade by treatment with an MEK inhibitor, PD98059, in SW626 cells also caused decreased cell viability following treatment with paclitaxel. Treatment of cells with paclitaxel also stimulated the phosphorylation of BAD at both the Ser-112 and Ser-136 sites. The phosphorylation of BAD at Ser-136 was blocked by treatment with wortmannin or cotransfection with the dominant negative Akt. On the other hand, the phosphorylation of BAD at Ser-112 was blocked by PD98059. We further examined the role of BAD in the viability following paclitaxel treatment using BAD mutants. Exogenous expression of doubly substituted BAD2SA in SW626 cells caused decreased viability following treatment with paclitaxel. Moreover, because paclitaxel-induced apoptosis is mediated by activated Raf-1 and the region surrounding Ser-259 in Raf-1 conforms to a consensus sequence for phosphorylation by Akt, the regulation of Raf-1 by Akt was examined. We demonstrated an association between Akt and Raf-1 and showed that the phosphorylation of Raf-1 on Ser-259 induced by paclitaxel was blocked by treatment with wortmannin or LY294002. Furthermore, interference with the Akt cascade induced by paclitaxel up-regulated Raf-1 activity, and expression of constitutively active Akt inhibited Raf-1 activity, suggesting that Akt negatively regulates Raf-1. Our findings suggest that paclitaxel induces the phosphorylation of BAD Ser-112 via the ERK cascade, and the phosphorylation of both BAD Ser-136 and Raf-1 Ser-259 via the PI-3K-Akt cascade, and that inhibition of either of these cascades sensitizes ovarian cancer cells to paclitaxel.  相似文献   

8.
BAD (Bcl-2 antagonist of cell death) belongs to the proapoptotic BH3-only subfamily of Bcl-2 proteins. Physiological activity of BAD is highly controlled by phosphorylation. To further analyze the regulation of BAD function, we investigated the role of recently identified phosphorylation sites on BAD-mediated apoptosis. We found that in contrast to the N-terminal phosphorylation sites, the serines 124 and 134 act in an antiapoptotic manner because the replacement by alanine led to enhanced cell death. Our results further indicate that RAF kinases represent, besides PAK1, BAD serine 134 phosphorylating kinases. Importantly, in the presence of wild type BAD, co-expression of survival kinases, such as RAF and PAK1, leads to a strongly increased proliferation, whereas substitution of serine 134 by alanine abolishes this process. Furthermore, we identified BAD serine 134 to be strongly involved in survival signaling of B-RAF-V600E-containing tumor cells and found that phosphorylation of BAD at this residue is critical for efficient proliferation in these cells. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation and its role in cancer signaling.  相似文献   

9.
The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.  相似文献   

10.
BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-XL proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli (13). This form of cellular suicide is widely observed in nature and is not only essential for embryogenesis, immune responses, and tissue homeostasis but is also involved in diseases such as tumor development and progression. Bcl-2 family proteins play a pivotal role in controlling programmed cell death. The major function of these proteins is to directly modulate outer mitochondrial membrane permeability and thereby regulate the release of apoptogenic factors from the intermembrane space into the cytoplasm (for a recent review, see Ref. 4). On the basis of various structural and functional characteristics, the Bcl-2 family of proteins is divided into three subfamilies, including proteins that either inhibit (e.g. Bcl-2, Bcl-XL, or Bcl-w) or promote programmed cell death (e.g. Bax, Bak, or Bok) (5, 6). A second subclass of proapoptotic Bcl-2 family members, the BH32-only proteins, comprises BAD, Bik, Bmf, Hrk, Noxa, truncated Bid, Bim, and Puma (4). BH3-only proteins share sequence homology only at the BH3 domain. The amphipathic helix formed by the BH3 domain (and neighboring residues) associates with a hydrophobic groove of the antiapoptotic Bcl-2 family members (7, 8). Originally, truncated Bid has been reported to interact with Bax and Bak (9), suggesting that some BH3-only proteins promote apoptosis via at least two different mechanisms: inactivating Bcl-2-like proteins by direct binding and/or by inducing modification of Bax-like molecules. BAD (Bcl-2-associated death promoter, Bcl-2 antagonist of cell death) was described to promote apoptosis by forming heterodimers with the prosurvival proteins Bcl-2 and Bcl-XL, thus preventing them from binding with Bax (10). More recently, two major models have been suggested for how BH3-only proteins may induce apoptosis. In the direct model, all BH3-only proteins promote cell death by directly binding and inactivating their specific anti-death Bcl-2 protein partner (11, 12). In this model, the relative killing potency of different BH3-only proteins is based on their affinities for antiapoptotic proteins. Thus, the activation of Bax/Bak would be mediated through their release from antiapoptotic counterparts. Contrary to this model, Kim et al. (13) provided support for an alternative hierarchy model, in which BH3-only proteins are divided into two distinct subsets. According to this model, the inactivator BH3-only proteins, like BAD, Noxa, and some others, respond directly to survival factors, resulting in phosphorylation, 14-3-3 binding, and suppression of the proapoptotic function. In the absence of growth factors, these proteins engage specifically their preferred antiapoptotic Bcl-2 proteins. The targeted Bcl-2 proteins then release the other subset of BH3-only proteins designated the activators (truncated Bid, Bim, and Puma) that in turn bind to and activate Bax and Bak.Non-phosphorylated BAD associated with Bcl-2/Bcl-XL is found at the outer mitochondrial membrane. Phosphorylation of specific serine residues, Ser-112 and Ser-136 of mouse BAD (mBAD) or the corresponding phosphorylation sites Ser-75 and Ser-99 of human BAD (hBAD), results in association with 14-3-3 proteins and subsequent relocation of BAD (14, 15). Phosphorylation of mBAD at Ser-155 (Ser-118 of hBAD) within its BH3 domain disrupts the association with Bcl-2 or Bcl-XL, promoting cell survival (16). Therefore, the phosphorylation status of BAD at these serine residues reflects a checkpoint for cell death or survival. Although the C-RAF kinase was the first reported BAD kinase (17), its target sites were not clearly defined. However, there is a growing body of evidence for direct participation of RAF in regulation of apoptosis via BAD (18, 19). In addition, Kebache et al. (20) reported recently that the interaction between adaptor protein Grb10 and C-RAF is essential for BAD-mediated cell survival. On the other hand, numerous reports suggest that PKA (21), Akt/PKB (22), PAK (18, 23, 24), Cdc2 (25), RSK (26, 27), CK2 (28), and PIM kinases (29) are involved in BAD phosphorylation as well. The involvement of c-Jun N-terminal kinase in BAD phosphorylation is controversially discussed. Whereas Donovan et al. (30) reported that c-Jun N-terminal kinase phosphorylates mBAD at serine 128, Zhang et al. (31) claimed that c-Jun N-terminal kinase is not a BAD-serine 128 kinase. On the other hand, it has been shown that c-Jun N-terminal kinase is able to suppress IL-3 withdrawal-induced apoptosis via phosphorylation of mBAD at threonine 201 (32). Thus, taken together, with respect to regulation of mBAD by phosphorylation, five serine phosphorylation sites (at positions 112, 128, 136, 155, and 170) and two threonines (117 and 201) have been identified so far. Intriguingly, only little data are available regarding the role of phosphorylation in regulation of hBAD protein, although significant structural differences between these two BAD proteins exist.During apoptosis, some members of the Bcl-2 family of proteins, such as Bax or Bak, have been shown to induce permeabilization of the outer mitochondrial membrane, allowing proteins in the mitochondrial intermembrane space to escape into the cytosol, where they can initiate caspase activation and cell death (for a review, see Refs. 33 and 34). Despite intensive investigation, the mechanism whereby Bax and Bak induce outer membrane permeability remains controversial (34). Based on crystal structure (35), it became evident that Bcl-XL has a pronounced similarity to the translocation domain of diphtheria toxin (36), a domain that can form pores in artificial lipid bilayers. This discovery provoked the predominant view that upon commitment to apoptosis, the proapoptotic proteins Bax and Bak also form pores in the outer mitochondrial membrane (37). As expected from the structural considerations, Bcl-XL was found to form channels in synthetic lipid membranes (38). Since then, other Bcl-2 family members like Bcl-2, Bax, and the BH3-only protein Bid have been reported to have channel-forming ability. These pores can be divided into two different types: proteinaceous channels of defined size and ion specificity (3842) and large lipidic pores that allow free diffusion of 2-megadalton macromolecules (43, 44). With respect to the BH3-only protein BAD, no pore-forming abilities have been reported so far, although human BAD has been found to possess per se high affinity for negatively charged phospholipids and liposomes, mimicking mitochondrial membranes (14).The RAF kinases (A-, B-, and C-RAF) play a central role in the conserved Ras-RAF-MEK-ERK signaling cascade and mediate cellular responses induced by growth factors (4547). Direct involvement of C-RAF in inhibition of proapoptotic properties of BAD established a link between signal transduction and apoptosis control (48, 49). However, the early works did not identify the exact RAF phosphorylation sites on BAD (17). Here we demonstrate that hBAD serves as a substrate of RAF isoforms. With respect to hBAD phosphorylation by PKA, Akt/PKB, and PAK1 in vivo, we observed different specificity compared with RAF kinases. hBAD phosphorylation by RAF was accompanied by reduced apoptosis in HEK293 cells (transformed human embryonic kidney cells) and NIH 3T3 cells (a mouse embryonic fibroblast cell line). Furthermore, we show that in vitro phosphorylation of hBAD by RAF at serines 75, 99, and 118 regulates the binding of 14-3-3 proteins and association with Bcl-2 and Bcl-XL. By use of mass spectrometry, we detected several novel in vivo phosphorylation sites of hBAD in addition to the established phosphorylation sites, serines 75, 99, and 118. Finally, we show here that hBAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins.  相似文献   

11.
BAD, a member of the BCL2 family, exhibits an original mode of regulation by phosphorylation. In the present report, we examine the role of the kinase C-RAF in this process. We show that the inducible activation of C-RAF promotes the rapid phosphorylation of BAD on Serine-112 (Ser-75 in the human protein), through a cascade involving the kinases MEK and RSK. Our findings reveal a new aspect of the regulation of BAD protein and its control by the RAF pathway: we find that C-RAF activation promotes BAD poly-ubiquitylation in a phosphorylation-dependent fashion, and increases the turn-over of this protein through proteasomal degradation.  相似文献   

12.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

13.
The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.  相似文献   

14.
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.  相似文献   

15.
Ye DZ  Jin S  Zhuo Y  Field J 《PloS one》2011,6(11):e27637

Background

Cell survival depends on the balance between protective and apoptotic signals. When the balance of signals tips towards apoptosis, cells undergo programmed cell death. This balance has profound implications in diseases including cancer. Oncogenes and tumor suppressors are mutated to promote cell survival during tumor development, and many chemotherapeutic drugs kill tumor cells by stimulating apoptosis. BAD is a pro-apoptotic member of the Bcl-2 family of proteins, which can be phosphorylated on numerous sites to modulate binding to Bcl-2 and 14-3-3 proteins and inhibit its pro-apoptotic activities. One of the critical phosphorylation sites is the serine 112 (S112), which can be phosphorylated by several kinases including Pak1.

Methodology/Principal Findings

We mapped the Pak phosphorylation sites by making serine to alanine mutations in BAD and testing them as substrates in in vitro kinase assays. We found that the primary phosphorylation site is not S112 but serine 111 (S111), a site that is sometimes found phosphorylated in vivo. In transfection assays of HEK293T cells, we showed that Pak1 required Raf-1 to stimulate phosphorylation on S112. Mutating either S111 or S112 to alanine enhanced binding to Bcl-2, but the double mutant S111/112A bound better to Bcl-2. Moreover, BAD phosphorylation at S111 was observed in several other cell lines, and treating one of them with the Pak1 inhibitor 2,2′-Dihydroxy-1,1′-dinaphthyldisulfide (IPA-3) reduced phosphorylation primarily at S112 and to a smaller extent at S111, while Raf inhibitors only reduced phosphorylation at S112.

Conclusion/Significance

Together, these findings demonstrate that Pak1 phosphorylates BAD directly at S111, but phosphorylated S112 through Raf-1. These two sites of BAD serve as redundant regulatory sites for Bcl-2 binding.  相似文献   

16.
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions.  相似文献   

17.
An earlier report showed that the U(S)3 protein kinase blocked the apoptosis induced by the herpes simplex virus 1 (HSV-1) d120 mutant at a premitochondrial stage. Further studies revealed that the kinase also blocks programmed cell death induced by the proapoptotic protein BAD. Here we report the effects of the U(S)3 protein kinase on the function and state of a murine BAD protein. Specifically, (i) in uninfected cells, BAD was processed by at least two proteolytic cleavages that were blocked by a general caspase inhibitor. The untreated transduced cells expressed elevated caspase 3 activity. (ii) In cells cotransduced with the U(S)3 protein kinase, the BAD protein was not cleaved and the caspase 3 activity was not elevated. (iii) Inasmuch as the U(S)3 protein kinase blocked the proapoptotic activity and cleavage of a mutant (BAD3S/A) in which the codons for the regulatory serines at positions 112, 136, and 155 were each replaced with alanine codons, the U(S)3 protein kinase does not act by phosphorylation of these sites nor was the phosphorylation of these sites required for the antiapoptotic function of the U(S)3 protein kinase. (iv) The U(S)3 protein kinase did not enable the binding of the BAD3S/A mutant to the antiapoptotic proteins 14-3-3. Finally, (v) whereas cleavage of BAD at ASP56 and ASP61 has been reported and results in the generation of a more effective proapoptotic protein with an M(r) of 15,000, in this report we also show the existence of a second caspase-dependent cleavage site most likely at the ASP156 that is predicted to inactivate the proapoptotic activity of BAD. We conclude that the primary effect of U(S)3 was to block the caspases that cleave BAD at either residue 56 or 61 predicted to render the protein more proapoptotic or at residue 156, which would inactivate the protein.  相似文献   

18.
The proapoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multisite phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the antiapoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses.  相似文献   

19.
Since the over-expression of Bcl-2 is a common cause of multi-drug resistance, cytotoxic peptides that overcome the effects of Bcl-2 may be clinically useful. We harnessed the death-promoting alpha helical properties of the BH3 domain of BAD by fusing it to the Antennapedia (ANT) domain, which allows for cell entry (ANTBH3BAD). Treatment of 32D cells with the ANTBH3BAD peptide results in a 99% inhibition of colony formation. No significant toxicity is observed after treatment with ANT or BH3BAD alone. A mutant fusion peptide unable to bind Bcl-2 induces cell death as effectively as the wild-type ANTBH3BAD. Furthermore, 32D cells over-expressing Bcl-2 show no resistance to the ANTBH3BAD peptide. Therefore, the toxicity of the peptide was independent of the Bcl-2 pathway. We demonstrate that the toxicity of the peptide is due to its alpha helicity that disrupts mitochondrial function. Since this peptide overcomes major forms of drug resistance, it may be therapeutically useful if appropriately targeted to malignant cells.  相似文献   

20.
To build up the structure of human BAD (Bcl-2 antagonist of cell death), subsequently combined with PKAc or PP1c (protein phosphatase 1), to investigate the interaction relationship between BAD and its kinase/PTPese at the molecular level. Additionally, it is concerned with the search for all optimal positions and orientations of a set of amino acid residues of BAD, while its binding sites include N-termini (Glu19, Ala27, and Ser34-Lys35), BH3-located helical domain (Arg98-Lys126), and C-termini (Trp154-Ser163 and Ser167-Gln168). The related sites of PKAc are mainly assembled in C-terminal α/β-domain of PKAc, which comprises the KTL motif (47-49), Glu203 residue, a helical region (Asp241-Arg256), and the span from 328 to 333; while the interaction sites with BAD converge at C-terminal β-domain of PP1c, which includes the DEK motif (166-168), the stretch from 179 to 197 including a helix (Glu184-Arg188), Glu230-Asp242 segment containing Val232-His237 helix, and Glu287-Leu289 loop. In conclusion, analysis of the complex between BAD and PKAc or PP1c provides a novel viewpoint on the structural origins of molecular recognition. And the complex models suggest that BH3 domain of BAD interact with PKAc or PP1c by electrostatic, van der Waals contacts, hydrogen bond and salt bridge. This is helpful for our development and research of some new drugs, especially mimetic BH3 peptides and inspires scientists with BAD complex and molecular mechanism of its integrating glycolysis and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号