首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small heat-shock protein alpha-crystallin isolated from the eye lens exists as a large (700 kDa) heteropolymer composed of two subunits, alphaA and alphaB, of 20 kDa each. Although trace amounts of alphaA-crystallin are found in other tissues, non-lenticular distribution of alpha-crystallin is dominated by the alphaB homopolymer. In most vertebrate lens, the molar ratio of alphaA to alphaB is generally 3:1. However, the importance of this ratio in the eye lens is not known. In the present study, we have investigated the physiological significance of the 3:1 ratio by determining the secondary/tertiary structure, hydrophobicity and chaperone-like activity of alphaA- and alphaB-homopolymers and heteropolymers with different ratios of alphaA to alphaB subunits. Although, under physiologically relevant conditions, the alphaB-homopolymer (37-40 degrees C) has shown relatively higher activity, the alphaA-homopolymer or the heteropolymer with a higher alphaA proportion (3:1 ratio) has shown greater chaperone-like activity at elevated temperatures (>50 degrees C) and also upon structural perturbation. Furthermore, higher chaperone activity at elevated temperatures as well as upon structural perturbation is mainly mediated through increased hydrophobicity of alphaA. Although homopolymers and heteropolymers of alpha-crystallin did not differ in their secondary structure, changes in tertiary structure due to structural perturbations upon pre-heating are mediated predominantly by alphaA. Interestingly, the heteropolymer with higher alphaA proportion (3:1) or the alphaA-homopolymer seems to be better chaperones in protecting lens beta- and gamma-crystallins at both normal and elevated temperatures. Thus lens might have favoured a combination of these qualities to achieve optimal protection under both native and stress (perturbed) conditions for which the heteropolymer with alphaA to alphaB in the 3:1 ratio appears to be better suited.  相似文献   

2.
Dengue viruses (DEN), causative agents of dengue fever (DF) and more severe dengue hemorrhagic fever (DHF)/dengue shock syndrome, infect over 100 million people every year. Among those infected, up to one-half million people develop DHF, which requires an extensive hospital stay. Recent reports indicate that there is a significant correlation between virus titer in the bloodstream of infected individuals and the severity of the disease, especially the development of DHF. This suggests that if there is a procedure to reduce viremia in infected subjects, then the severity of the disease may be controlled during the critical early stages of the disease before it progresses to DHF. We have generated bispecific mAb complexes (heteropolymer(s), HP), which contain a mAb specific for the DEN envelope glycoprotein cross-linked with a second mAb specific for the primate E complement receptor 1. These HP facilitate rapid binding of DEN to human and monkey E in vitro, with approximately 90% bound within 5 min. Furthermore, in a passive viremia monkey model established by continuous steady state infusion of DEN, injection of HP during the steady state promoted rapid binding of DEN to the E, followed by subsequent clearance from the vascular system. Moreover, HP previously infused into the circulation is capable of efficiently capturing a subsequent challenge dose of DEN and binding it to E. These data suggest that HP potentially can be useful for alleviating DEN infection-associated symptoms by reducing titers of free virus in the vascular system.  相似文献   

3.
End-to-end annealing of microtubules in vitro   总被引:13,自引:6,他引:7       下载免费PDF全文
Mixtures of pre-formed microtubules, polymerized from chicken erythrocyte and brain tubulin, rapidly anneal end-to-end in vitro in standard microtubule assembly buffer. The erythrocyte tubulin segments in annealed heteropolymers can be distinguished by an immunoelectron microscopic assay that uses an antibody specific for chicken erythrocyte beta-tubulin. An annealing process is consistent with the following observations: (a) Microtubule number decreases while the polymer mass remains constant. (b) As the total number of microtubules declines, the number of heteropolymers, and the number of segments contained in each heteropolymer, increases. (c) The size of the segments determined after annealing and antibody labeling is the same as the original microtubule polymers. (d) Points of discontinuity in the annealing heteropolymers can be observed directly by electron microscopy, and correspond to type-specific polymer domains. The junctions probably represent initial contact points during the annealing process. Microtubule annealing occurs rapidly in vitro and may be significant for determining properties of microtubule dynamics in vivo.  相似文献   

4.
Ferritin is a class of iron storage protein composed of 24 subunits. Although many studies on gene expression analyses of plant ferritin have been conducted, the functions and oligomeric assembly of plant ferritin subunits are still largely unknown. In order to characterize the ability to form multimeric protein shells and determine the iron incorporating activity, we produced ferritin homo- and heteropolymers by expressing four cDNAs of ferritin subunits from soybean, sfer1, sfer2, sfer3, and sfer4, using an in vitro protein expression system. Using SDS-PAGE analysis followed by Prussian blue stain, homopolymers of SFER1, SFER2, and SFER3, and heteropolymers of SFER1/SFER2 and SFER1/SFER3 were detected as assembled polymers with iron incorporating activity, whereas only a small amount of SFER4 related homo- and heteropolymer was detected, suggesting that the SFER4 was not competent for oligomeric assembly, unlike every other ferritin. We conclude that certain combinations of plant ferritin subunits can form heteropolymers and that their iron incorporating activities depend on the formation of multimeric protein.  相似文献   

5.
6.
Ferritins from the liver and spleen of the cold-adapted Antarctic teleosts Trematomus bernacchii and Trematomus newnesi have been isolated and characterized. Interestingly, only H- and M-chains are expressed and no L-chains. The H-chains contain the conserved ferroxidase center residues while M-chains harbor both the ferroxidase center and the micelle nucleation site ligands. Ferritins have an organ-specific subunit composition, they are: M homopolymers in spleen and H/M heteropolymers in liver. The M-chain homopolymer mineralizes iron at higher rate with respect to the H/M heteropolymer, which however is endowed with a lower activation energy for the iron incorporation process, indicative of a higher local flexibility. These findings and available literature data on ferritin expression in fish point to the role of tissue-specific expression of different chains in modulating the iron oxidation/mineralization process.  相似文献   

7.
8.
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.  相似文献   

9.
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2(-) and ura3(-) for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 micro g per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.  相似文献   

10.
As one of the most widely used drugs worldwide, heparin is an essential anticoagulant required for surgery, dialysis, treatment of thrombosis, cancer, and general circulatory management. Stabilin-2 is a scavenger clearance receptor with high expression in the sinusoidal endothelium of liver. It is believed that Stabilin-2 is the primary receptor for the clearance of unfractionated and low molecular weight heparins in the liver. Here, we identify the modifications and length of the heparin polymer that are required for binding and endocytosis by both human Stabilin receptors: Stabilin-2 and its homolog Stabilin-1 (also found in liver endothelium). Using enzymatically synthesized (35)S-labeled heparan sulfate oligomers, we identified that sulfation of the 3-OH position of N-sulfated glucosamine (GlcNS) is the most beneficial modification for binding and endocytosis via both Stabilin receptors. In addition, our data suggest that a decasaccharide is the minimal size for binding to the Stabilin receptors. These findings define the physical parameters of the heparin structure required for efficient clearance from blood circulation. These results will also aid in the design of synthetic heparins with desired clearance rates.  相似文献   

11.
A heteropolymer model of randomly self-interacting chains in two dimensions is studied with numerical simulations in order to elucidate the folding mechanism of protein. We find that the model occasionally shows folding propensity depending on the sequence of random numbers given to the chain. We study the thermodynamic and kinematic roles in the folding mechanism by grouping the local energy minima found in the simulations into clusters according to the similarity of their conformations. It is suggested that the local minima to which some heteropolymers show a folding tendency are always the lowest energy states of the energy spectrum within a cluster, though which cluster is selected depends on the sequence. For the eight random sequences we study, we find that the energy gap between the ground state and excited states is little correlated with folding or nonfolding. We rather find that folding propensities are correlated with the global structure of the average energy surface, implying a dominant kinetic role in the folding mechanism, although thermal factors cannot be ignored as the mechanism of choosing the ground state within a cluster of states connected by small deformations. We suggest that a hierarchical cluster structure plays an important role in selecting a unique folded state out of the huge number of local minima of heteropolymers. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Interphotoreceptor retinoid binding protein (IRBP) is a soluble glycolipoprotein located between the neurosensory retina and pigment epithelium, which may serve to transport vitamin A derivatives between these tissues. The specific cell type responsible for IRBP synthesis has not been well established. To address this issue, we have examined the expression of IRBP mRNA in human and cone-dominant ground squirrel retinas by in situ hybridization. Optimal labeling and histological resolution were achieved with 35S- and 3H-labeled anti-sense riboprobes made from a human IRBP cDNA clone, and semi-thin wax-embedded retinal sections. In human retina, label was localized over the inner segments of both rod and cone photoreceptors. Quantitative analysis demonstrated a fourfold higher density of label over rod inner segments. In ground squirrel retina, labeling was found almost exclusively over the inner segments of cones. The results indicate that in human retina both rods and cones express IRBP mRNA, albeit at different levels. In cone-dominant species such as the ground squirrel, cones are the principal cell type responsible for IRBP mRNA synthesis.  相似文献   

13.
Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.  相似文献   

14.
 The primate erythrocyte complement receptor facilitates both the immune adherence reaction and the immune complex clearance properties of primate erythrocytes. These phenomena have been studied for more than 40 years. However, it has only recently become apparent that these characteristics of primate erythrocytes may be useful in the generation of a therapy based on bispecific monoclonal antibodies. Our approach uses bispecific monoclonal antibody constructs (heteropolymers) that promote binding of specific target pathogens to primate erythrocytes via the complement receptor. Once bound to the erythrocytes, the pathogen-heteropolymer complex should be cleared from the circulation, phagocytosed and destroyed in the liver. Results with several prototype target pathogens in monkey models indicate it may be possible to use this technology to develop a robust and general therapy for the treatment of diseases associated with blood-borne pathogens. Accepted: 14 October 1997  相似文献   

15.
Methylation of Micrococcus lysodeikticus DNA by purified DNA methylase isolated from L1210 leukaemia cells is potently and specifically inhibited by both hetero and homoribo and deoxyribopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length, but is abolished when the O6 residue of guanine is substituted as in poly[d(O6MeG)]20. Potent inhibition is also shown by polyinosinic and polyxanthylic acids, but not by polyadenylic acid or by heteropolymers containing adenine and thymine. These results suggest that the 6-position of the purine nucleus is important in binding of the DNA methylase to a particular region of the DNA duplex and that the hydrogen bonding properties of this group are important in enzyme recognition.  相似文献   

16.
Jean Sturm 《Biopolymers》1981,20(4):753-763
A Monte Carlo method is presented to calculate equilibria for the binding of ligands to one-dimensional heteropolymers. Equivalency with other methods suitable for particular cases was verified (i.e., matrix and combinatorial methods). The principal interest of this Monte Carlo method is in its facility for adaptation to any physically conceivable binding model and that it gives access to the parameters accounting for partial binding to each different type of site. General properties of binding isotherms with excluded-site effects and relations between partial binding ratios and partial free site ratios are discussed. An effective calculation is presented for illustration of the method.  相似文献   

17.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

18.
Mechanism of mRNA binding to bovine mitochondrial ribosomes   总被引:3,自引:0,他引:3  
The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria.  相似文献   

19.
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2 and ura3 for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 μg per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.  相似文献   

20.
Reid CW  Brewer D  Clarke AJ 《Biochemistry》2004,43(35):11275-11282
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer, peptidoglycan, between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. With 72% amino acid sequence identity between the enzymes, the theoretical structure of the membrane-bound lytic transglycosylase B (MltB) from Psuedomonas aeruginosa was modeled on the known crystal structure of Escherichia coli Slt35, the soluble derivative of its MltB. Of the twelve residues in Slt35 known to make contacts with peptidoglycan derivatives in Slt35, nine exist in the same position in the P. aeruginosa homologue, with two others only slightly displaced. To probe the binding properties of an engineered soluble form of the P. aeruginosa MltB, a SUPREX method involving hydrogen/deuterium exchange coupled with MALDI mass spectrometry detection was developed. Dissociation constants were calculated for a series of peptidoglycan components and compared to those obtained by difference UV absorption spectroscopy. These data indicated that GlcNAc alone does not bind to MltB with any measurable affinity but it does contribute to the binding of GlcNAc-MurNAc-dipeptide. With the MurNAc series of ligands, significant binding contributions are made through both the N-acetyl and C-3 lactyl moieties of the aminosugar with additional contributions to binding provided by associated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号