首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mammalian pyruvate dehydrogenase multienzyme complex is inactivated when treated with a leupeptin-sensitive enzyme (termed 'inactivase') obtained from rat liver lysosomes. However, the inactivation of the overall reaction does not affect any of the component activities of the enzyme complex. By several methods it is demonstrated that treatment with the inactivase provokes the disassembly of the complex into its constituent enzyme components which, though being enzymatically active when assayed separately, are unable to catalyze the coordinated reaction sequence of pyruvate oxidation. The dissociation occurs as a consequence of limited proteolysis of the lipoate acetyltransferase core of the multienzyme complex. Isolated nicked acetyltransferase retains its complete enzymatic activity and behaves as a high-molecular-weight aggregate. The lipoamide dehydrogenase and pyruvate dehydrogenase components, however, are not cleaved by the inactivase.  相似文献   

2.
The activity of pyruvate dehydrogenase phosphate (PDHb) phosphatase in rat brain mitochondria and homogenate was determined by measuring the rate of activation of purified, phosphorylated (i.e., inactive) pyruvate dehydrogenase complex (PDHC), which had been purified from bovine kidney and inactivated by phosphorylation with Mg . ATP. The PDHb phosphatase activity in purified mitochondria showed saturable kinetics with respect to its substrate, the phospho-PDHC. It had a pH optimum between 7.0 and 7.4, depended on Mg and Ca, and was inhibited by NaF and K-phosphate. These properties are consistent with those of the highly purified enzyme from beef heart. On subcellular fractionation, PDHb phosphatase copurified with mitochondrial marker enzymes (fumarase and PDHC) and separated from a cytosolic marker enzyme (lactate dehydrogenase) and a membrane marker enzyme (acetylcholinesterase), suggesting that it, like its substrate, is located in mitochondria. PDHb phosphatase had similar kinetic properties in purified mitochondria and in homogenate: dependence on Mg and Ca, independence of dichloroacetate, and inhibition by NaF and K-phosphate. These results are consistent with there being only one type of PDHb phosphatase in rat brain preparations. They support the validity of the measurements of the activity of this enzyme in brain homogenates.  相似文献   

3.
A method was devised to purify branched-chain oxo acid dehydrogenase (BCOAD) from rat kidney which retains endogenous kinase activity. Incorporation of 32P into purified enzyme parallels the time course of enzyme inhibition by ATP. Phosphorylation occurs on a serine residue(s) of the 46000-mol.wt. subunit of the enzyme complex. Endogenous phosphatase activity is not present after purification, and added pyruvate dehydrogenase phosphate phosphatase does not re-activate BCOAD or liberate 32P from previously labelled enzyme. These results demonstrate that BCOAD can be regulated by an endogenous protein kinase and that the phosphorylation-cycle enzymes regulating BCOAD appear to be distinct from those associated with pyruvate dehydrogenase complex.  相似文献   

4.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

5.
Lipoamide dehydrogenases from various sources were purified and their immunochemical properties were compared. Antibody against rat lipoamide dehydrogenase reacted with rat, human, pig, pigeon and frog enzymes, but not with enzymes from E. coli, yeast and Ascaris. Anti-Ascaris enzyme and anti-E. coli enzyme antibodies reacted with Ascaris and E. coli enzymes, respectively. The pyruvate dehydrogenase subcomplex, which consists of pyruvate dehydrogenase and lipoate acetyltransferase, was prepared by releasing the lipoamide dehydrogenase from rat heart pyruvate dehydrogenase complex by anti-lipoamide dehydrogenase antibody. Lipoamide dehydrogenases from various sources were added to rat pyruvate dehydrogenase subcomplex and the complex overall activity was measured. Each lipoamide dehydrogenase effectively recovered the overall activity of rat pyruvate dehydrogenase subcomplex to 80% of the original activity.  相似文献   

6.
A simple method is described for the isolation of crystalline pyruvate kinase from human skeletal muscle. The enzyme was purified by ammonium sulfate fractionation, heat treatment and crystallization. Two crystal forms of pyruvate kinase differing in solubility but not in specific activity were found. The homogenous enzyme preparations in triethanolamine buffer, pH 7.6 reveal at 25 degrees a specific activity of 245 U per mg protein, and of 340 U/mg in potassium phosphate buffer (50 mM). The enzyme is activated by inorganic phosphate and fructosediphosphate to the same extent, and inhibited non competetively by ammonium ion. The molecular weight as measured by gel filtration is 220,000 daltons and the enzyme molecule is composed of 4 subunits.  相似文献   

7.
We developed a novel procedure for isolation of the muscle isozymes of aldolase, triose phosphate isomerase (TPI), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), enolase, pyruvate kinase (PK) and lactic dehydrogenase (LDH), and also creatine kinase (CK), at high purity, specific activity and yield. Protein was extracted from chicken breast muscle and glycolytic enzymes were purified by a three step procedure consisting of: Ammonium sulfate combined with pH fractionation. Phosphocellulose chromatography with performance of high pressure liquid chromatography, exploiting a pH gradient formed by a gradient of the buffering ion for protein elution. Affinity chromatography causing elution by substrate or pH. The enzymes, obtained at over 95% purity as judged by specific activity and silver stained electropherograms, were injected into sheep. Antibody for each enzyme was purified on specific immunosorbant and its specificity was verified by immunotransfer analysis.  相似文献   

8.
The L-(+)-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) of Streptococcus lactis C10, like that of other streptococci, was activated by fructose 1,6-diphosphate (FDP). The enzyme showed some activity in the absence of FDP, with a pH optimum of 8.2; FDP decreased the Km for both pyruvate and reduced nicotinamide adenine dinucleotide (NADH) and shifted the pH optimum to 6.9. Enzyme activity showed a hyperbolic response to both NADH and pyruvate in all the buffers tried except phosphate buffer, in which the response to increasing NADH was sigmoidal. The FDP concentration required for half-maximal velocity (FDP0.5V) was markedly influenced by the nature of the assay buffer used. Thus the FDP0.5V was 0.002 mM in 90 mM triethanolamine buffer, 0.2 mM in 90 mM tris(hydroxymethyl)aminomethanemaleate buffer, and 4.4 mM in 90 mM phosphate buffer. Phosphate inhibition of FDP binding is not a general property of streptococcal lactate dehydrogenase, since the FDP0.5V value for S. faecalis 8043 lactate dehydrogenase was not increased by phosphate. The S. faecalis and S. lactis lactate dehydrogenases also differed in that Mn2+ enhanced FDP binding in S. faecalis but had no effect on the S. lactis dehydrogenase. The FDP concentration (12 to 15 mM) found in S. lactis cells during logarithmic growth on a high-carbohydrate (3% lactose) medium would be adequate to give almost complete activation of the lactate dehydrogenase even if the high FDP0.5V value found in 90 mM phosphate were similar to the FDP requirement in vivo.  相似文献   

9.
Acholeplasma laidlawii A possesses a nicotinamide adenine dinucleotide (NAD)-dependent l(+)-lactate dehydrogenase (LDH) which is activated specifically by low concentrations of fructose-1, 6-diphosphate (FDP). Studies with partially purified enzyme show that the kinetic response to FDP is hyperbolic. The enzyme is inhibited by inorganic phosphate, adenosine triphosphate, and high concentrations of reduced NAD (NADH). Low activity is demonstrable in the absence of FDP at pH 6.0 to 7.2, but FDP is absolutely required in the region of pH 8. FDP causes an upward shift in the optimum pH of the enzyme, which is near 7.2 in tris (hydroxymethyl)aminomethane buffer. Activation of the enzyme by FDP is markedly affected by substrate concentration; FDP lowers the apparent K(m) for pyruvate and NADH. The affinity of the enzyme for pyruvate is also influenced by H(+) concentration. The pyruvate analogue alpha-ketobutyrate serves as an effective substrate for the enzyme; when it is utilized, the enzyme is still activated by FDP. Reversal of the pyruvate reduction reaction catalyzed by the enzyme can be demonstrated with the 3-acetylpyridine analogue of NAD. The catalytic properties of the A. laidlawii enzyme and the known FDP-activated LDHs which occur among lactic acid bacteria are discussed.  相似文献   

10.
The E. coli pyruvate dehydrogenase complex was inhibited by pyruvate in absence of its cofactor, NAD+. The inhibition was found to increase with pH and phosphate concentration of the buffer and decrease with its ionic strength. The inhibition profile was different with MOPS buffer. No radioactivity was found in the enzyme, when the latter was incubated with 2-14C-pyruvate. The results suggest that covalent adduct formation is not necessary for the observed inhibition.  相似文献   

11.
The role of pyruvate metabolism in the triggering of aerobic, alcoholic fermentation in Saccharomyces cerevisiae has been studied. Since Candida utilis does not exhibit a Crabtree effect. this yeast was used as a reference organism. The localization, activity and kinetic properties of pyruvate carboxylase (EC 6.4.1.1), the pyruvate dehydrogenase complex and pyruvate decarboxylase (EC 4.1.1.1) in cells of glucose-limited chemostat cultures of the two yeasts were compared. In contrast to the general situation in fungi, plants and animals, pyruvate carboxylase was found to be a cytosolic enzyme in both yeasts. This implies that for anabolic processes, transport of C4-dicarboxylic acids into the mitochondria is required. Isolated mitochondria from both yeasts exhibited the same kinetics with respect to oxidation of malate. Also, the affinity of isolated mitochondria for pyruvate oxidation and the in situ activity of the pyruvate dehydrogenase complex was similar in both types of mitochondria. The activity of the cytosolic enzyme pyruvate decarboxylase in S. cerevisiae from glucose-limited chemostat cultures was 8-fold that in C. utilis. The enzyme was purified from both organisms, and its kinetic properties were determined. Pyruvate decarboxylase of both yeasts was competitively inhibited by inorganic phosphate. The enzyme of S. cerevisiae was more sensitive to this inhibitor than the enzyme of C. utilis. The in vivo role of phosphate inhibition of pyruvate decarboxylase upon transition of cells from glucose limitation to glucose excess and the associated triggering of alcoholic fermentation was investigated with 31P-NMR. In both yeasts this transition resulted in a rapid drop of the cytosolic inorganic phosphate concentration. It is concluded that the relief from phosphate inhibition does stimulate alcoholic fermentation, but it is not a prerequisite for pyruvate decarboxylase to become active in vivo. Rather, a high glycolytic flux and a high level of this enzyme are decisive for the occurrence of alcoholic fermentation after transfer of cells from glucose limitation to glucose excess.  相似文献   

12.
T B Patel  M S Olson 《Biochemistry》1982,21(18):4259-4265
The regulation of the branched chain alpha-keto acid dehydrogenase complex by covalent modification was investigated in rat liver mitochondria. Depletion of intramitochondrial calcium and magnesium caused an inactivation of the branched chain alpha-keto acid dehydrogenase complex. Following inactivation of the branched chain complex, addition of calcium or magnesium ions separately to incubations of mitochondria only partially reactivated the enzyme complex. However, simultaneous addition of calcium and magnesium activated the branched chain enzyme complex rapidly and nearly completely. Mitochondrial incubations were performed in the presence of [32P]phosphate under conditions known to activate or to inactivate the branched chain alpha-keto acid dehydrogenase complex. Evidence demonstrating that [32P]-phosphate was incorporated into two major protein bands separated in sodium dodecyl sulfate-polyacrylamide gels of the mitochondrial incubations is presented. Migration of the labeled mitochondrial protein bands in the gel system corresponded exactly to the migration of the alpha subunit of the purified heart-derived pyruvate dehydrogenase (decarboxylase, E1) and the alpha subunit of the purified kidney-derived branched chain alpha-keto acid dehydrogenase (decarboxylase, E1). Furthermore, when the measured activity of the branched chain complex was minimized, the amount of [32P]phosphate incorporated into the alpha chain of the branched chain enzyme was maximal. Conversely, incubation conditions which activated maximally the enzyme complex minimized the [32P]phosphate incorporation into the alpha subunit of the branched chain dehydrogenase.  相似文献   

13.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

14.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

15.
Studies with partially purified extracts of the nicotinamide adenine dinucleotide-linked l(+)-lactate dehydrogenase of Streptococcus cremoris US3 showed that fructose-1,6-diphosphate (FDP) was essential for the catalytic reduction of pyruvate in the pH range 5.0 to 7.0, outside of which the organism does not grow. In the absence of FDP, enzyme activity was observed only in the region of pH 8.0. The optimal pH for the oxidation of lactate was approximately 8.0 in the presence and absence of FDP. The FDP-activated enzyme was markedly inhibited by inorganic phosphate. The enzyme lost activity on standing at 5 C in alkaline triethanolamine, was quite stable at pH 6.0 to 6.5, and underwent irreversible denaturation below pH 5.0. Inorganic phosphate or FDP increased the stability of the enzyme in alkaline buffers. Some distinguishing properties of individual lactate dehydrogenases, activated by FDP, are discussed.  相似文献   

16.
The NADP+-specific isocitrate dehydrogenase (threo-DS-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42) of Excherichia coli has been purified to electrophoretic homogeneity by a two-step purification procedure employing affinity chromatography. The overall yield of enzyme was 30% with specific activity 125 mumol/min per ng protein. Electrophoretic homogeneity of the isocitrate dehydrogenase was deterimed in analytical polyacrylamide gels in a Tris/acetate/EDTA buffer system at pH 7.5 and in a citrate/phosphate buffer system at pH 6.0.  相似文献   

17.
Lactate dehydrogenase in Phycomyces blakesleeanus.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   

18.
Pyravate kinase (ATP: pyruvate 2-0 phosphotransferase E.C.2.7.1.40) was purified from Brochothrix thermosphacta. The enzyme is a homotetramer of monomer Mr 58,000. Fructose-1,6-bisphosphate stimulates activity and promotes hyperbolic kinetics although it is not essential for enzyme activity. The positive effect of fructose-1,6-bisphosphate on activity is repressed by inorganic phosphate which enhances cooperative kinetics. Unlike pyruvate kinases from other sources, the Brochothrix enzyme is uncompetitively inhibited by glucose-6-phosphate, although at high concentration. ATP is a strong inhibitor of pyruvate kinase and shifts the residual activity/pH profile towards more alkaline values.  相似文献   

19.
Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species.  相似文献   

20.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号