共查询到20条相似文献,搜索用时 46 毫秒
1.
The activation energy for the formation of the first red compound, ES, for cytochrome-c peroxidase (ferrocytochrome-c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) by i-propyl hydroperoxide and the rate constants for the formation of ES with various hydroperoxides have been determined. Multivariate data analysis by the partial least-squares model in latent variables has been used to compare the rate constants with the corresponding rate constants for the formation of compound I from lactoperoxidase and two isoenzymes of horseradish peroxidase. The results show that the rate of formation of ES from cytochrome-c peroxidase is highly correlated with the pKa of the hydroperoxides. The activation energy for the formation of ES with i-propyl hydroperoxide is close to the corresponding value for hydrogen peroxide. 相似文献
2.
Surface enhanced Raman scattering of three enzymes--alkaline phosphatase, horseradish peroxidase and lactoperoxidase is studied. The intensity of normal vibrations of definite amino acids is determined by their orientation on the surface and depends on the electrode potential. Alkaline phosphatase and lactoperoxidase make a complex with silver ions. 相似文献
3.
S J McFaul H Lin J Everse 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,183(2):244-249
The kinetics of the cytolytic activity expressed by lactoperoxidase and horseradish peroxidase toward erythrocytes in the presence of H2O2 and iodide have been investigated at physiological pH. The action of both enzymes was found to be very similar with respect to their kinetic mechanisms. Both enzymes showed saturation kinetics at higher enzyme concentrations under conditions where substrate concentrations were not limiting. Optimal concentrations of H2O2 and iodide were found to be 40 and 25 microM, respectively, for both enzymes. Higher concentrations of H2O2 inhibited the cytolytic activity. The pH dependence of the cytolytic reaction is also very similar for both enzymes, showing maximal activity at about pH 6.3. Moreover, the cytolytic activities of both enzymes were inhibited by tyrosine, tryptophan, cysteine, and to a lesser extent by histidine. We conclude from these data that the mechanisms of horseradish peroxidase and lactoperoxidase in promoting the lysis of erythrocytes are closely related if not identical. 相似文献
4.
M S Zahida W Deva G M Peerzada D V Behere 《Indian journal of biochemistry & biophysics》1998,35(6):353-357
Oxidation of para substituted phenols by horseradish peroxidase compound II (HRP-II) and lactoperoxidase compound II (LPO-II) were studied using stopped flow technique. Apparent second order rate constants (kapp) of the reactions were determined. The kinetics of oxidation of phenols by HRP-II and LPO-II have been compared with the oxidation potentials of the substrates. Reorganization energies of electron-transfer of phenols to the enzymes were estimated from the variation of second order rate constants with the thermodynamic driving force. 相似文献
5.
Gebicka L 《Acta biochimica Polonica》1999,46(4):919-927
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method. 相似文献
6.
Chang HC Holland RD Bumpus JA Churchwell MI Doerge DR 《Chemico-biological interactions》1999,123(3):197-217
The peroxidase from Coprinus cinereus (CPX) catalyzed oxidative oligomerization of 4-chloroaniline (4-CA) forming several products: N-(4-chlorophenyl)-benzoquinone monoamine (dimer D), 4,4'-dichloroazobenzene (dimer E); 2-(4-chloroanilino)-N-(4-chlorophenyl)-benzoquinone (trimer F); 2-amino-5-chlorobenzoquinone-di-4-chloroanil (trimer G); 2-(4-chloroanilino)-5-hydroxybenzoquinone-di-4-chloroanil (tetramer H) and 2-amino-5-(-4-chlroanilino)-benzoquinone-di-4-chloroanil (tetramer 1). In the presence of 4-CA and H2O2, CPX was irreversibly inactivated within 10 min. Inactivation of CPX in the presence of H2O2 was a time-dependent, first-order process when the concentration of 4-CA was varied between 0 and 2.5 mM. The apparent dissociation constant (Ki) for CPX and 4-CA was 0.71 mM. The pseudo-first order rate constant for inactivation (k(inact)), was 1.15 x 10(-2) s(-1). Covalent incorporation of 20 mole 14C-4-CA per mole of inactivated CPX was observed. The partition ratio was about 2200 when either 4-CA or H2O2 was used as the limiting substrate. These results show that 4-CA is a metabolically activated inactivator (i.e. a suicide substrate). Unmodified heme and hydroxymethyl heme were isolated from native, 4-CA-inactivated and H2O2-incubated CPX. Inactivation resulted in significant losses in both heme contents. Analysis of tryptic peptides from 4-CA-inactivated CPX by MALDI-TOF/ MS and UV-VIS spectrophotometry suggested that trimer G and tetramer H were the major 4-CA derivatives that were covalently bound, including to a peptide (MGDAGF-SPDEVVDLLAAHSLASQEGLNSAIFR) containing the heme binding site. These studies show that heme destruction and covalent modification of the polypeptide chain are both important for the inactivation of CPX. These results were compared with similar studies on 4-CA-inactivated horseradish peroxidase (HRP) and bovine lactoperoxidase (LPO) during the oxidation of 4-CA. 相似文献
7.
Reaction of horseradish peroxidase A2 and C with superoxide anion (O2-) has been studied using pulse radiolysis technique. Peroxidase C formed Compound I and an oxy form of the enzyme due to reaction of ferric enzyme with hydrogen peroxide (H2O2) and O2-, respectively. At low concentrations of O2- (less than 1 mM), O2- reacted with ferric peroxidase C nearly quantitatively and formation of H2O2 was negligible. The rate constant for the reaction was found to be increased below pH 6 and this phenomenon can be explained by assuming that HO2 reacts with peroxidase C more rapidly than O2-. In contrast the formation of oxyperoxidase could not be detected in the case of peroxidase A2 after the pulse, and only Compound I of the enzyme was formed. Peroxidase A2, however, produced the oxy form upon aerobic addition of NADH, suggesting that O2- can also react with peroxidase A2 to form the oxy form. The results at present indicate that the rate constant for the reaction of O2- with peroxidase A2 is smaller than 103 M-1.s-1. 相似文献
8.
The eosinophil peroxidase gene forms a cluster with the genes for myeloperoxidase and lactoperoxidase on human chromosome 17 总被引:3,自引:0,他引:3
Eosinophil peroxidase (EPX) is one of a family of mammalian peroxidases that includes myeloperoxidase (MPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO). Here we show that the human EPX gene maps to chromosome 17q23.1, which localizes 34 kb from the LPO and MPO genes. Our results demonstrate that the EPX, LPO, and MPO genes form a cluster on human chromosome 17. 相似文献
9.
Based on kinetic evidence, it has been shown for the first time that the mode of binding of aromatic donor molecules is similar in horseradish peroxidase and lactoperoxidase; also that the nature of the heme plays an important role in the reaction with hydrogen peroxide, and has no effect on the reaction of the intermediate compound II with aromatic substrates. 相似文献
10.
11.
K M Pruitt D N Kamau K Miller B M?nsson-Rahemtulla F Rahemtulla 《Analytical biochemistry》1990,191(2):278-286
Because of the important biological functions of peroxidases, there is growing interest in the measurement of their concentrations in various secretions. At present, there is no standard method which allows for comparisons in reported activities. This report describes procedures which can be used to measure peroxidase enzyme concentrations by commonly employed assays. Regression equations have been determined which can be used to calculate concentrations of bovine lactoperoxidase (LPO), human salivary peroxidase (SPO), and human myeloperoxidase (MPO) from activities measured with the following donors: pyrogallol, guaiacol, 2,2'-azinobis(3-ethylbenzylthiazoline-6-sulfonic acid), and thiocyanate (SCN-). The peroxidation rates of these donors depend upon the concentrations of hydrogen peroxide (H2O2) used in the individual assays and thus, for accurate, reproducible results, these concentrations must be carefully controlled. The SCN- normally present in human saliva will reduce observed reaction rates by simple competition kinetics in the ABTS, guaiacol and pyrogallol assays and will increase the rates observed when Cl- is used as a donor in NBS assay for MPO. Therefore, SCN- must be removed from saliva samples prior to peroxidase activity determination by all assays except the thionitrobenzoic acid (NBS) assay. LPO cannot be used as a standard for either SPO or MPO because the specific activities of LPO, SPO, and MPO are significantly different. 相似文献
12.
Iodination of arachidonic acid mediated by eosinophil peroxidase, myeloperoxidase and lactoperoxidase. Identification and comparison of products 总被引:1,自引:0,他引:1
Arachidonic acid undergoes iodination in the presence of hydrogen peroxide, iodide, and either eosinophil peroxidase, myeloperoxidase or lactoperoxidase. The profile of products generated by each of the three peroxidases is similar as determined by reversed-phase high-performance liquid chromatography. Structural analysis of the products indicate that: 1, each of the four double bonds in arachidonic acid is susceptible to iodination; 2, arachidonic acid can be multiply iodinated; and 3, the carboxylate moiety does not participate in the formation of all products. The isomeric composition of the isolated products indicates that peroxidase-mediated iodination of arachidonate is not stereoselective. 相似文献
13.
《Electromagnetic biology and medicine》2013,32(2):126-133
ABSTRACTThis work shows the effects of exposure to an electromagnetic field at 900?MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry. 相似文献
14.
Proteolytic and peroxidatic reactions of commercial horseradish peroxidase with myelin basic protein 下载免费PDF全文
Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329-336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P(2) protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H(2)O(2). Horseradish peroxidase plus H(2)O(2) caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H(2)O(2) and myoglobin plus H(2)O(2) were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H(2)O(2) were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H(2)O(2), incubations with catalytic concentrations of peroxidase in the presence of H(2)O(2) converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions. 相似文献
15.
The effect of vanadium (V) on the activity of horseradish peroxidase, catalase, glutathione peroxidase, and superoxide dismutase has been studied. A competitive inhibition pattern was evident for vanadate ions on the activity of horseradish peroxidase (Ki = 41.2 microM). No significant inhibitory effects were found when V(V) was tested with catalase and when either V(IV) or V(V) were assayed with glutathione peroxidase. For the latter, the effect of V on the different components of the reaction system was investigated. V(V) did not significantly affect SOD activity when assayed with the sulfite method, which is devoid of interferences with V(V); however, there was an apparent inhibitory dose-response pattern for either V(IV) or V(V) using the pyrogallol assay, owing to an interference of pyrogallol with the metal. Besides, no significant binding of V(IV) or V(V) to the enzyme could be demonstrated. The lack of a direct inhibitory effect of V on the activity of the main antioxidant enzymes suggests that many biological and toxicological effects of V may be mediated more by oxidative reactions of the metal or of its complexes with physiologically relevant biomolecules than by a direct modulation of enzymatic activities. 相似文献
16.
J J López-Garriga W A Oertling R T Kean H Hoogland R Wever G T Babcock 《Biochemistry》1990,29(40):9387-9395
The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Isobel M. Ralston Jan Wauters Karel Heremans H. Brian Dunford 《Biophysical chemistry》1982,15(1):15-18
The activation volumes for the reactions of horseradish peroxidase compound II with L-tyrosine. 3-iodo-L-tyrosine. p-aminobenzoic acid and ferrocyanide were determined by using a high-pressure stopped-flow technique at 25°C and pH 7. For the tyrosines, the solvent electrostriction accompanying substrate ionization and H+ transfer from the substituted phenol to a basic group of the enzyme can account for the observed negative activation volumes. For p-aminobenzoic acid a simple electron transfer without H+ transfer appears to occur. The positive activation volume for ferrocyanide may be explained in terms of electron transfer associated with a large change in electrostriction of the inorganic redox couple. 相似文献
18.
Characterization of one- and two-electron oxidations of glutathione coupled with lactoperoxidase and thyroid peroxidase reactions 总被引:1,自引:0,他引:1
M Nakamura I Yamazaki S Ohtaki S Nakamura 《The Journal of biological chemistry》1986,261(30):13923-13927
Glutathione (GSH) was oxidized to GSSG in the presence of H2O2, tyrosine, and peroxidase. During the GSH oxidation catalyzed by lactoperoxidase, O2 was consumed and the formation of glutathione free radical was confirmed by ESR of its 5,5'-dimethyl-1-pyrroline-N-oxide adduct. When lactoperoxidase was replaced by thyroid peroxidase in the reaction system, the consumption of O2 and the formation of the free radical became negligibly small. These results led us to conclude that, in the presence of H2O2 and tyrosine, lactoperoxidase and thyroid peroxidase caused the one-electron and two-electron oxidations of GSH, respectively. It was assumed that GSH is oxidized by primary oxidation products of tyrosine, which are phenoxyl free radicals in lactoperoxidase reactions and phenoxyl cations in thyroid peroxidase reactions. When tyrosine was replaced by diiodotyrosine or 2,6-dichlorophenol, the difference in the mechanism between lactoperoxidase and thyroid peroxidase disappeared and both caused the one-electron oxidation of GSH. Iodides also served as an effective mediator of GSH oxidation coupled with the peroxidase reactions. In this case the two peroxidases both caused the two-electron oxidation of GSH. 相似文献
19.
The peroxidase catalyzed oxidation of indole-3-acetate is inhibited by naturally occurring coumarins such as scopoletin. This inhibition is due to the preferential reactivity of the coumarins with the peroxidase compounds I, II, and III. In view of the possible growth regulatory role of coumarins in plants, the mechanism of oxidation of scopoletin by horse-radish peroxidase has been investigated. 相似文献
20.
De Gioia Elena M. Ghibaudi Enzo Laurenti Mario Salmona R. P. Ferrari 《Journal of biological inorganic chemistry》1996,1(5):476-485
Lactoperoxidase (LPO), eosinophil peroxidase (EPO) and myeloperoxidase (MPO) belong to the class of haloperoxidases, a group
of mammalian enzymes able to catalyze the peroxidative oxidation of halides and pseudohalides, such as thiocyanate. They all
play a key role in the development of antibacterial activity. The homology in their functional role is emphasized by the striking
similarity of their primary structures. A theoretical model for the three-dimensional structure of LPO and EPO has been developed
on the basis of the X-ray structure of MPO, a high degree of similarity having been found in their sequences. Evidence supporting
the hypothesis of an ester linkage between heme and apoprotein in LPO and EPO, originally proposed by Hultquist and Morrison
is discussed.
Received: 2 May 1996 / Accepted: 25 July 1996 相似文献