首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most crops grown in Europe, including sunflower (Helianthus annulus L.), benefit from insect pollination. However, valuing this benefit is not straightforward since estimates of the increase in sunflower yield vary from 18% to 100%. Most estimates have, moreover, been performed at plant scale, a scale that is not relevant for farmers who calculate at the field scale. In this four-year study, we quantified the contribution of insect pollination to sunflower yield at field and plant scales in working farm fields distributed along a gradient of pollinator diversity and abundance. Pollinators were found to increase field yield up to 40% (i.e. 0.7 t/ha) and by 31.3% at plant scale; the magnitude of effect on yield being therefore similar at both scales. The pollinators increased the yield by increasing the number of fertilized seeds per plant with no significant effect on the unit mass of the seeds although there was a trade-off between number of seeds and unit mass. Among pollinators, honeybees were the main taxon impacting sunflower yield. Sunflower plant density was a strong determinant of yield, with higher numbers attracting increased numbers of honeybees. Using pollinator and wind exclusion, we finally quantified the relative contributions of self-pollination (∼40%), insect pollination (∼35%) and wind pollination (∼20%). Our results show, to the best of our knowledge, the first evidence of the key role of pollinators in sunflower production at field scale in real farming conditions, and underscore the need to maintain suitable conditions for pollinators in agricultural landscapes.  相似文献   

2.
The effect of pre-sowing magnetic treatments was investigated on germination, growth and yield of okra (Abelmoschus esculentus cv. Sapz pari). The dry okra seeds were exposed to sinusoidal magnetic field induced by an electromagnet. The average magnetic field exposure was 99 mT for 3 and 11 min and seeds with no magnetic field treatment were considered as control. Both treated and non-treated seeds were sown in experimental plots (120 m2) under similar conditions. Samples were collected at regular intervals for statistical analysis. A significant increase (P < 0.05) was observed in germination percentage, number of flowers per plant, leaf area (cm2), plant height (cm) at maturity, number of fruits per plant, pod mass per plant and number of seeds per plant. The 99 mT for 11 min exposure showed better results as compared to control.  相似文献   

3.
The effects of an extremely low frequency magnetic field (ELFMF) on the germination of plant seeds were examined. The decrease in the germination activity of the seeds of Arabidopsis thaliana WS kept in saturated humidity and high temperature (37 degrees C) was suppressed by the exposure to a 400 mT ELFMF.  相似文献   

4.
The effects of an extremely low frequency magnetic field (ELFMF) on the germination of plant seeds were examined. The decrease in the germination activity of the seeds of Arabidopsis thaliana WS kept in saturated humidity and high temperature (37°C) was suppressed by the exposure to a 400 mT ELFMF.  相似文献   

5.
A central problem in the study of magnetic sensitivity in animals has been the lack of behavioral techniques sufficiently powerful for the systematic psychophysical work required for an understanding of magnetosensory capacity and of the transduction mechanism. In recent experiments, free-flying honeybees have been conditioned to discriminate the presence and absence of localized magnetic dipole anomalies superimposed on the uniform background field of the earth. The results obtained thus far suggest that movement is necessary for conditioned responding to magnetic field stimuli and support the hypothesis that magnetic field transduction is based on single-domain particles of magnetite found in the anterodorsal abdomen of honeybees.  相似文献   

6.
The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop.  相似文献   

7.
Impacts of naturally-occurring soil fungi on seeds of meadow plants   总被引:2,自引:0,他引:2  
Although soil fungi may represent an ecologically important cause of mortality of buried seeds, few studies have provided direct evidence of the pathogenicity of fungi colonizing seeds in natural habitats. In response, we conducted a series of experiments to investigate the impacts of soil fungi from a range of habitats on seeds of meadow plants. We compared the survival of seeds of four grasses in five habitats, and isolated fungi from these seeds. We then tested the pathogenicity of selected isolates against two standard sets of plant species: the original four grasses and a broad range of old field species. We found that the soil community contained a large variety of seed-colonizing fungi. Some, but not all, examples of these fungi caused seed mortality; others may be harmless commensals. Some of these isolates negatively affected a broad range of plant species, but others had a more restricted host range; as a result, pathogenicity varied depending upon the particular plant-fungus combination. Few between-habitat differences in seed survival were detected. Our results demonstrate that fungal seed pathogens are common, ubiquitous, and potentially lethal, but that their effects depend on the particular combination of fungus and plant species considered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper the influence of a stationary magnetic field on the initial stages of barley plant development was evaluated. A stationary magnetic field has a stimulating effect on the first stages of growth of barley seeds for all exposure times studied. When germinating barley seeds were subjected to a magnetic field of 125 mT for different times (1, 10, 20, and 60 min, 24 h, and chronic exposure), increases in length and weight were observed. Maximum increases in the measured parameters were obtained when the time of exposure to magnetic field was long (24 h and chronic); however, the exposure for a short time (1 min) had a similar effect on growth.  相似文献   

9.
Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15 min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.  相似文献   

10.
Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15?min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.  相似文献   

11.
提高植物自身对外界不良环境的抵抗能力一直是植物研究人员关注的热点,物理方法在这一领域中正得到日益广泛的应用。本文综合沦述了近年来电场、磁场、电离辐射、激光等物理技术处理植物的种子或幼苗在提高植物抗冻、旱以及病害等逆境的能力,促进农作物增产中的应用成果及其可能的生理生化机制,并对未来的发展方向作了展望。  相似文献   

12.
Impact of pre-sowing exposure of seeds to static magnetic field were studied on 1 month old maize [Zea mays . var: HQPM.1] plants under field conditions. Pre-standardized magnetic field strength of 100 mT (2 h) and 200 mT (1 h), which were proven best for improving different seedling parameters under laboratory condition, were used for this study. Magnetic field treatment altered growth, superoxide radical level, antioxidant enzymes and photosynthesis. Among the different growth parameters, leaf area and root length were the most enhanced parameters (78–40%, respectively), over untreated plants. Electron paramagnetic resonance spectroscopy study showed that superoxide radical was reduced and hydroxyl radical was unaffected after magnetic field treatment. With decrease in free radical content, antioxidant enzymes like superoxide dismutase and peroxidase were also reduced by 43 and 23%, respectively, in plants that emerged from magnetically treated seeds. Measurement of Chlorophyll a fluorescence by plant efficiency analyzer showed that the potential of processing light energy through photosynthetic machinery was enhanced by magnetic field treatment. Performance index of the plant enhanced up to two-fold and phenomenological leaf model showed more active reaction centers after magnetic field treatment. Among the two field strengths used, 200 mT (1 h) was more effective in altering all these parameters. It is concluded that pre-sowing magnetic field treatment can be effectively used for improving plant growth and development under field conditions.  相似文献   

13.
In the present study, the effect of the static and alternating magnetic field applied individually and in combination with an algal extract on the germination of soybean seeds (Glycine max (L.) Merrill) and chlorophyll content was examined. The exposure time of seeds to the static magnetic field was 3, 6, and 12 min, whereas to the alternating magnetic field was 1, 2.5, and 5 min. The static magnetic field was obtained by means of a permanent magnets system while the alternating magnetic field by means of magnetic coils. Algal extract was produced from a freshwater macroalga—Cladophora glomerata using ultrasound homogenizer. In the germination tests, 10% extract was applied to the paper substrate before sowing. This is the first study that compares the germination of soybean seeds exposed to the static and alternating magnetic field. The best effect on the germination and chlorophyll content in seedlings had synergistic action of the static magnetic field on seeds for 3 min applied together with the extract and alternating magnetic field used for 2.5 min. It is not possible to clearly state which magnetic field better stimulated the germination of seeds, but the chlorophyll content in seedlings was much higher for alternating magnetic field.  相似文献   

14.
引入西方蜜蜂对中蜂的危害及生态影响   总被引:42,自引:9,他引:33  
杨冠煌 《昆虫学报》2005,48(3):401-406
作者阐述自1896年中国引进西方蜜蜂Apis melliferaL.的优良品种如意大利蜂Apis mellifera ligusticaSpinola和喀尼阿兰蜂Apis mellifera Carnica Pollmann以来,使当地的东方蜜蜂Apis cerana F.受到严重危害,其分布区域缩小75%以上,种群数量减少80%以上。使山林植物授粉总量减少,导致植物多样性减少。文中提出: 建立自然保护区保存本地蜜蜂遗传特性,和采用基因转移等技术,培育具有西方蜜蜂优良生产性能的中蜂新品种,逐步恢复中蜂的种群数量。  相似文献   

15.
The effects of modifications of magnetic fields, simulating anomalies of natural magnetism of the Earth, were studied in the seeds of peas and winter wheat. It has been shown that strengthening or weakening of the geomagnetic field inhibits water absorption and initial growth processes. The influence of magnetic fields on the orientation of rootlets and development of plantlets is determined. The connection between the magnetic susceptibility of seeds and content of heavy metals in them is established, which obviously concerns the magnetic susceptibility and magnetotropism in plants.  相似文献   

16.
周小梅  徐谨  李君剑 《植物研究》2009,29(3):325-328
对不同预处理条件下多年生黑麦草种子萌发、愈伤组织诱导以及植株再生进行了研究。结果表明,35℃恒温干燥处理3 h、浸泡16 h后,室温晾48 h的干湿交替及强度为1 000 GS磁场处理30 min均能使种子的发芽率得到显著提高。最适诱导培养基为MS+2,4-D 6 mg·L-1,有机添加物对于愈伤组织的生长影响并不显著,但可以改善其状态;较为适宜的分化培养基为MS+2 mg·L-1 6-BA或KT;生根培养基为附加0.5 mg·L-1 NAA的MS培养基。  相似文献   

17.
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.  相似文献   

18.
The content and composition of lipids were studied in the seeds of radish plants (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) grown from “seed to seed” in 2008 and 2009 in the greenhouse of the Institute of Plant Physiology in a permanent horizontal magnetic field (PMF) of Helmholz coils with the strength of ~400 A/m, in soil culture, at natural day length, and a temperature changing during the day. PMF suppressed all stages of radish plant development, from the appearance of alternative leaves to the formation of pods and mature seeds. In plants of the North-South magnetically oriented type (NS MOT), PMF reduced the number and weight of seeds; in the West-East magnetically oriented type (WEMOT), the number of seeds was reduced but their weights increased. In the seeds of the first generation of NS MOT, the total lipid content was higher than in the seeds of WE MOT. The amount of polar lipids in the seeds of NS MOT increased, whereas in the seeds of WE MOT it decreased or remained unchanged as compared with control. The content of neutral lipids reduced in both plant types. The strongest changes in the fatty acid composition of lipids with the highest content of unsaturated fatty acids were observed in the seeds of WE MOT in 2008. The weak PMF-induced differences in the changes of lipid composition and content in the seeds of different MOTs were evidently determined by seed sensitivity to the direction of field action. It is suggested that the occurrence of different MOTs increases the tolerance of plant population to unfavorable environmental factors, thus affecting its survival.  相似文献   

19.
Habitat fragmentation often leads to small and isolated plant populations as well as decreased habitat quality. These processes can fundamentally disrupt the interactions between plants and pollinators and decrease reproductive success. This concerns especially self-incompatible, non-clonal species that depend on pollination for successful reproduction.In two rare and endangered heathland plant species, Genista anglica and G. pilosa, we examined pollination and reproduction in relation to population size. Eight populations of G. anglica and ten populations of G. pilosa were surveyed in the vicinity of Bremen, NW-Germany. We counted the visits of pollinators (honeybees, bumblebees, and other insects) and determined the reproductive output of the observed shoots.Contrary to our expectation to find increased pollinator visitation rates in larger populations of both Genista species, the number of flower-visiting insects was unrelated to the number of flowering shoots. Increasing shoot length had a positive and increasing temperature a negative impact on the number of visiting honeybees and bumblebees. Despite the general absence of population size effects on pollinator numbers, the number of fruits and seeds in G. anglica increased with increasing population size. Fruit and seed set in G. pilosa were negatively related to the number of ‘other insects’. Our field observations showed that larger populations of both Genista species flowered earlier than smaller populations and much earlier than reported in the literature. Flowering in large populations therefore tends to coincide less well with pollinator abundance, and this may cause a disruption of the temporal coincidence between flowering phenology and pollinator activity.  相似文献   

20.
Pre-sowing treatment of pulsed electromagnetic fields was used in corn seeds, in both indoor and outdoor conditions, in order to investigate the effect on plant growth and yield. The results of this research showed that pulsed electromagnetic fields can enhance plant characteristics, both under controlled environmental conditions and uncontrolled field conditions. The two varieties responded differently in the duration of magnetic field. Seeds were treated for 0, 15, 30, and 45 min with pulsed electromagnetic field (MF-0, MF-15, MF-30, and MF-45). Common corn variety performed better results in MF-30 treatment, while sweet corn variety performed better in MF-45 treatment. Magnetic field improved germination percentage, vigor, chlorophyll content, leaf area, plant fresh and dry weight, and finally yields. In the very interesting measurement of yield, seeds that have been exposed to magnetic field for 30 and 45 min have been found to perform the best results with no statistical differences among them. Another interesting finding was in root dry weight measurements, where magnetic field has a negative impact in MF-30 treatment in both hybrids, however without affecting other measurements. Enhancements on plant characteristics with economic impact on producer's income could be the future of a modern, organic, and sustainable agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号