共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Schafer DW 《Biometrics》2001,57(1):53-61
This paper presents an EM algorithm for semiparametric likelihood analysis of linear, generalized linear, and nonlinear regression models with measurement errors in explanatory variables. A structural model is used in which probability distributions are specified for (a) the response and (b) the measurement error. A distribution is also assumed for the true explanatory variable but is left unspecified and is estimated by nonparametric maximum likelihood. For various types of extra information about the measurement error distribution, the proposed algorithm makes use of available routines that would be appropriate for likelihood analysis of (a) and (b) if the true x were available. Simulations suggest that the semiparametric maximum likelihood estimator retains a high degree of efficiency relative to the structural maximum likelihood estimator based on correct distributional assumptions and can outperform maximum likelihood based on an incorrect distributional assumption. The approach is illustrated on three examples with a variety of structures and types of extra information about the measurement error distribution. 相似文献
3.
We introduce a new method, moment reconstruction, of correcting for measurement error in covariates in regression models. The central idea is similar to regression calibration in that the values of the covariates that are measured with error are replaced by "adjusted" values. In regression calibration the adjusted value is the expectation of the true value conditional on the measured value. In moment reconstruction the adjusted value is the variance-preserving empirical Bayes estimate of the true value conditional on the outcome variable. The adjusted values thereby have the same first two moments and the same covariance with the outcome variable as the unobserved "true" covariate values. We show that moment reconstruction is equivalent to regression calibration in the case of linear regression, but leads to different results for logistic regression. For case-control studies with logistic regression and covariates that are normally distributed within cases and controls, we show that the resulting estimates of the regression coefficients are consistent. In simulations we demonstrate that for logistic regression, moment reconstruction carries less bias than regression calibration, and for case-control studies is superior in mean-square error to the standard regression calibration approach. Finally, we give an example of the use of moment reconstruction in linear discriminant analysis and a nonstandard problem where we wish to adjust a classification tree for measurement error in the explanatory variables. 相似文献
4.
Guolo A 《Biometrics》2008,64(4):1207-1214
SUMMARY: We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer. 相似文献
5.
On errors-in-variables for binary regression models 总被引:2,自引:0,他引:2
CARROLL RAYMOND J.; SPIEGELMAN CLIFFORD H.; LAN K. K. GORDON; BAILEY KENT T.; ABBOTT ROBERT D. 《Biometrika》1984,71(1):19-25
6.
Measurement error models in logistic regression have received considerable theoretical interest over the past 10-15 years. In this paper, we present the results of a simulation study that compares four estimation methods: the so-called regression calibration method, probit maximum likelihood as an approximation to the logistic maximum likelihood, the exact maximum likelihood method based on a logistic model, and the naive estimator, which is the result of simply ignoring the fact that some of the explanatory variables are measured with error. We have compared the behavior of these methods in a simple, additive measurement error model. We show that, in this situation, the regression calibration method is a very good alternative to more mathematically sophisticated methods. 相似文献
7.
8.
9.
Regression calibration, refined regression calibration, and conditional scores estimation procedures are extended to a measurement model that is motivated by nutritional and physical activity epidemiology. Biomarker data, available on a small subset of a study cohort for reasons of cost, are assumed to adhere to a classical measurement error model, while corresponding self-report nutrient consumption or activity-related energy expenditure data are available for the entire cohort. The self-report assessment measurement model includes a person-specific random effect, the mean and variance of which may depend on individual characteristics such as body mass index or ethnicity. Logistic regression is used to relate the disease odds ratio to the actual, but unmeasured, dietary or physical activity exposure. Simulation studies are presented to evaluate and contrast the three estimation procedures, and to provide insight into preferred biomarker subsample size under selected cohort study configurations. 相似文献
10.
11.
Covariate measurement error in generalized linear models 总被引:1,自引:0,他引:1
12.
13.
14.
This article demonstrates semiparametric maximum likelihood estimation of a nonlinear growth model for fish lengths using imprecisely measured ages. Data on the species corvina reina, found in the Gulf of Nicoya, Costa Rica, consist of lengths and imprecise ages for 168 fish and precise ages for a subset of 16 fish. The statistical problem may therefore be classified as nonlinear errors-in-variables regression with internal validation data. Inferential techniques are based on ideas extracted from several previous works on semiparametric maximum likelihood for errors-in-variables problems. The illustration of the example clarifies practical aspects of the associated computational, inferential, and data analytic techniques. 相似文献
15.
16.
Summary . We consider a set of independent Bernoulli trials with possibly different success probabilities that depend on covariate values. However, the available data consist only of aggregate numbers of successes among subsets of the trials along with all of the covariate values. We still wish to estimate the parameters of a modeled relationship between the covariates and the success probabilities, e.g., a logistic regression model. In this article, estimation of the parameters is made from a Bayesian perspective by using a Markov chain Monte Carlo algorithm based only on the available data. The proposed methodology is applied to both simulation studies and real data from a dose–response study of a toxic chemical, perchlorate. 相似文献
17.
The effects of measurement error on parameter estimation 总被引:2,自引:0,他引:2
18.
Regression problems with controllable variables subject to error 总被引:3,自引:0,他引:3
19.
20.