首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.  相似文献   

2.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   

3.
Already at initial phases of infection, HIV is coated with complement fragments. During the chronic phase, when HIV-specific IgGs appear, the virus circulates immune complexed with IgG and complement. Thus, we studied the interaction of dendritic cells (DCs) and DC-T cell cocultures with complement (C)-opsonized and C-IgG-opsonized HIV. HIV infection of monocyte-derived DCs and circulating BDCA-1-positive DCs was significantly reduced upon the presence of virus-specific but non-neutralizing IgGs. DCs exposed to C-Ig-HIV or IgG-opsonized HIV showed an impaired provirus formation and p24 production and a decreased transmission rate to autologous nonstimulated T cells upon migration along a chemokine gradient. This reduced infectivity was also observed in long-term experiments, when T cells were added delayed to DCs exposed to IgG-coated HIV without migration. Similar kinetics were seen when sera from HIV-1-infected individuals before and after seroconversion were used in infection assays. Both C- and C-IgG-opsonized HIV were captured and targeted to a tetraspanin-rich endosome in immature DCs, but differed with respect to MHC class II colocalization. The reduced infection by IgG-opsonized HIV is possibly due to interactions of virus-bound IgG with FcgammaRIIb expressed on DCs. Therefore, the intracellular fate and transmission of immune-complexed HIV seems to differ depending on time and opsonization pattern.  相似文献   

4.
Presently marketed vaginal barrier methods are cytotoxic and damaging to the vaginal epithelium and natural vaginal flora when used frequently. Novel noncytotoxic agents are needed to protect men and women from sexually transmitted diseases. One novel candidate is a mandelic acid condensation polymer, designated SAMMA. The spectrum and mechanism of antiviral activity were explored using clinical isolates and laboratory-adapted strains of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). SAMMA is highly effective against all CCR5 and CXCR4 isolates of HIV in primary human macrophages and peripheral blood mononuclear cells. SAMMA also inhibits infection of cervical epithelial cells by HSV. Moreover, it exhibits little or no cytotoxicity and has an excellent selectivity index. SAMMA, although not a sulfonated or sulfated polymer, blocks the binding of HIV and HSV to cells by targeting the envelope glycoproteins gp120 and gB-2, respectively, and also inhibits HSV entry postattachment. SAMMA is an excellent, structurally novel candidate microbicide that warrants further preclinical evaluation.  相似文献   

5.
The susceptibility of monocyte-derived cultured dendritic cells (DCs) to human immunodeficiency virus (HIV) infection and their role in viral transmission in the immune response were studied in detail. We observed that highly purified cultured DCs were infected with the T-tropic Lai strain of HIV type 1 (HIV-1Lai) via the CD4 receptor, and this was followed by formation of the complete provirus as detected by PCR. HIV mRNAs were transcribed at only low levels, and virus production was undectable; however, the addition of the purified protein derivative antigen of tuberculin and of autologous resting T cells to HIV-1Lai-infected DCs but not to HIV-1Lai-infected macrophages led to massive HIV transmission and production. These data suggest that the interaction of infected DCs with T cells during the normal immune response could play an important role in the activation and expansion of HIV.  相似文献   

6.
The infection of cultured monocyte-derived dendritic cells (DCs) with HIV-1 involves CD4 and CCR5 receptors, while transmission to T cells is enhanced at least in part by the lectin DC-SIGN/CD209. In the present study, we studied BDCA-1+ myeloid DCs isolated directly from human blood. These cells express CD4 and low levels of CCR5 and CXCR4 coreceptors, but not DC-SIGN. The myeloid DCs replicate two R5 viruses, BaL and YU2, and transfer infection to activated T cells. The virus productively infects a small fraction of the blood DCs that fail to mature in culture, as indicated by the maturation markers CD83 and DC-LAMP/CD208, and the expression of high CD86 and MHC class II, in contrast to many noninfected DCs. A greater proportion of BDCA-1+ DCs are infected when the virus is pseudotyped with the vesicular stomatitis envelope VSV-G (5-15%), as compared with the R5 virus (0.3-3.5%), indicating that HIV-1 coreceptors may limit the susceptibility of DCs to become infected, or the endocytic route of viral entry used by HIV/vesicular stomatitis virus enhances infectivity. When infected and noninfected cells are purified by cell sorting, the former uniformly express HIV p24 gag and are virtually inactive as stimulators of the allogeneic MLR, in contrast to potent stimulation by noninfected DCs from the same cultures. These results point to two roles for a small fraction of blood DCs in HIV-1 pathogenesis: to support productive infection and to evade the direct induction of T cell-mediated immunity.  相似文献   

7.
8.
9.
Dendritic cells (DCs) are among the first cells encountered by human and simian immunodeficiency virus (HIV and SIV) following mucosal infection. Because these cells efficiently capture and transmit virus to T cells, they may play a major role in mediating HIV and SIV infection. Recently, a C-type lectin protein present on DCs, DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), was shown to efficiently bind and present HIV and SIV to CD4(+), coreceptor-positive cells in trans. However, the significance of DC-SIGN for virus transmission and pathogenesis in vivo remains unclear. Because SIV infection of macaques may represent the best model to study the importance of DC-SIGN in HIV infection, we cloned and characterized pig-tailed macaque DC-SIGN and generated monoclonal antibodies (MAbs) against it. We demonstrate that, like human DC-SIGN, pig-tailed macaque DC-SIGN (ptDC-SIGN) is expressed on DCs and macrophages but not on monocytes, T cells, or B cells. Moderate levels of ptDC-SIGN expression were detected on the surface of DCs, and low-level expression was found on macrophages. Additionally, we show that ptDC-SIGN efficiently binds and transmits replication-competent SIVmne variants to CD4(+), coreceptor-positive cells. Moreover, transmission of virus between pig-tailed macaque DCs and CD4(+) T cells is largely ptDC-SIGN dependent. Interestingly, MAbs directed against ptDC-SIGN vary in the capacity to block transmission of different SIVmne variants. These data demonstrate that ptDC-SIGN plays a central role in transmitting virus from macaque DCs to T cells, and they suggest that SIVmne variants may differ in their interactions with ptDC-SIGN. Thus, SIVmne infection of pig-tailed macaques may provide an opportunity to investigate the significance of DC-SIGN in primate lentiviral infections.  相似文献   

10.
Dendritic cells (DCs) are specialized antigen-presenting cells. However, DCs exposed to human immunodeficiency virus type 1 (HIV-1) are also able to transmit a vigorous cytopathic infection to CD4(+) T cells, a process that has been frequently related to the ability of DC-SIGN to bind HIV-1 envelope glycoproteins. The maturation of DCs can increase the efficiency of HIV-1 transmission through trans infection. We aimed to comparatively study the effect of maturation in monocyte-derived DCs (MDDCs) and blood-derived myeloid DCs during the HIV-1 capture process. In vitro capture and transmission of envelope-pseudotyped HIV-1 and its homologous replication-competent virus to susceptible target cells were assessed by p24(gag) detection, luciferase activity, and both confocal and electron microscopy. Maturation of MDDCs or myeloid DCs enhanced the active capture of HIV-1 in a DC-SIGN- and viral envelope glycoprotein-independent manner, increasing the life span of trapped virus. Moreover, higher viral transmission of mature DCs to CD4(+) T cells was highly dependent on active viral capture, a process mediated through cholesterol-enriched domains. Mature DCs concentrated captured virus in a single large vesicle staining for CD81 and CD63 tetraspanins, while immature DCs lacked these structures, suggesting different intracellular trafficking processes. These observations help to explain the greater ability of mature DCs to transfer HIV-1 to T lymphocytes, a process that can potentially contribute to the viral dissemination at lymph nodes in vivo, where viral replication takes place and there is a continuous interaction between susceptible T cells and mature DCs.  相似文献   

11.
The identification of surfactant protein A (SP-A) as an important innate immune factor of the lungs, amniotic fluid, and the vaginal tract suggests that it could play an important role during various stages of HIV disease progression and transmission. Therefore, we examined whether SP-A could bind to HIV and also had any effect on viral infectivity. Our data demonstrate that SP-A binds to HIV in a calcium-dependent manner that is inhibitable by mannose and EDTA. Affinity capture of the HIV viral lysate reveals that SP-A targets the envelope glycoprotein of HIV (gp120), which was confirmed by ELISA using recombinant gp120. Digestion of gp120 with endoglycosidase H abrogates the binding of SP-A, indicating that the high mannose structures on gp120 are the target of the collectin. Infectivity studies reveal that SP-A inhibits the infection of CD4+ T cells by two strains of HIV (BaL, IIIB) by >80%. Competition assays with CD4 and mAbs F105 and b12 suggest that SP-A inhibits infectivity by occlusion of the CD4-binding site. Studies with dendritic cells (DCs) demonstrate that SP-A enhances the binding of gp120 to DCs, the uptake of viral particles, and the transfer of virus from DCs to CD4+ T cells by >5-fold at a pH representative of the vaginal tract. Collectively, these results suggest that SP-A acts as a dual modulator of HIV infection by protecting CD4+ T cells from direct infection but enhancing the transfer of infection to CD4+ T cells mediated by DCs.  相似文献   

12.
Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection.  相似文献   

13.
Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.  相似文献   

14.
Ex vivo foreskin models have demonstrated that inner foreskin is more susceptible to HIV-1 infection than outer foreskin. In the present study we characterized the compartition of HIV-1 target cells and quantified these cells in the epidermis and dermis of inner and outer foreskins using immunohistochemistry and flow cytometry. Our data showed that the epidermis of the inner foreskin was more enriched with CD4+ T cells and Langerhans cells (LCs), with the co-expression of CCR5 and α4β7 receptors, than the outer foreskin. Interestingly, the vast majority of CD4+ T cells and LCs expressed CCR5, but not CXCR4, indicating that the inner foreskin might capture and transmit R5-tropic HIV strains more efficiently. In addition, lymphoid aggregates, composed of T cells, macrophages and dendritic cells (DCs) in the dermis, were closer to the epithelial surface in the inner foreskin than in the outer foreskin. As dendritic cells are able to capture and pass HIV particles to susceptible target cells, HIV may be able to more efficiently infect the inner foreskin by hijacking the augmented immune communication pathways in this tissue. After the inoculation of HIV-1 particles in a foreskin explant culture model, the level of p24 antigen in the supernatant from the inner foreskin was slightly higher than that from the outer foreskin, although this difference was not significant. The present study is the first to employ both CCR5 and α4β7 to identify HIV target cells in the foreskin. Our data demonstrated that the inner foreskin was more enriched with HIV target immune cells than the outer foreskin, and this tissue was structured for efficient communication among immune cells that may promote HIV transmission and replication. In addition, our data suggests the R5-tropism of HIV sexual transmission is likely shaped through the inherent receptor composition on HIV target cells in the mucosa.  相似文献   

15.
We used live-cell, real-time fluorescence imaging of co-cultures of HIV-1 infected T cells and uninfected target cells to examine the action of mitochondria during cell-to-cell transmission of the virus. We find that mitochondria of HIV infected cells enter uninfected target cells and advance viral spread. We show that human mitochondria serve as viral reservoirs and carriers and that they can move between cells. This was confirmed by our results that purified mitochondria from HIV infected cells are infectious, and that mitochondrial inhibitors block HIV transmission. Viral infection and replication in the target cells were verified by syncytial formation and HIV-1 core protein p24 production. Our results offer new insights into the cellular mechanisms of viral transmission and identify mitochondria as new host targets for viral infection.  相似文献   

16.
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.  相似文献   

17.
Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+) T cells (ApoInf) or apoptotic uninfected activated CD4(+) T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+) T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+) T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.  相似文献   

18.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection.  相似文献   

19.
Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus.  相似文献   

20.
The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号