首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Some pathways of T cell differentiation are associated with characteristic patterns of chemokine receptor expression. A new lineage of effector/memory CD4+ T cells has been identified whose signature products are IL-17 cytokines and whose differentiation requires the nuclear receptor, RORgammat. These Th17 cells are critical effectors in mouse models of autoimmune disease. We have analyzed the association between chemokine receptor expression and IL-17 production for human T cells. Activating cord blood (naive) CD4+ T cells under conditions driving Th17 differentiation led to preferential induction of CCR6, CCR9, and CXCR6. Despite these data, we found no strong correlation between the production of IL-17 and expression of CCR9 or CXCR6. By contrast, our analyses revealed that virtually all IL-17-producing CD4+ T cells, either made in our in vitro cultures or found in peripheral blood, expressed CCR6, a receptor found on approximately 50% of CD4+ memory PBL. Compared with CD4+CD45RO+CCR6- cells, CD4+CD45RO+CCR6+ cells contained at least 100-fold more IL-17A mRNA and secreted 100-fold more IL-17 protein. The CCR6+ cells showed a similar enrichment in mRNA for RORgammat. CCR6 was likewise expressed on all IL-17-producing CD8+ PBL. CCR6 has been associated with the trafficking of T, B, and dendritic cells to epithelial sites, but has not been linked to a specific T cell phenotype. Our data reveal a fundamental feature of IL-17-producing human T cells and a novel role for CCR6, suggesting both new directions for investigating IL-17-related immune responses and possible targets for preventing inflammatory injury.  相似文献   

4.
The cytokine, transforming growth factor-beta1 (TGF-beta1), converts naive T cells into regulatory T cells that prevent autoimmunity. However, in the presence of interleukin (IL)-6, TGF-beta1 has also been found to promote differentiation into IL-17-producing helper T (Th17) cells that are deeply involved in autoimmunity and inflammation. However, it has not been clarified how TGF-beta1 and IL-6 determine such a distinct fate. Here we found that a master regulator for Th17, retinoic acid-related orphan receptor gammat (RORgammat), was rapidly induced by TGF-beta1 regardless of the presence of IL-6. IL-6 reduced Foxp3 expression, and overexpression of Foxp3 in a T cell line resulted in a strong reduction of IL-17A expression. We have characterized the IL-17A promoter and found that RORgammat binding is sufficient for activation of the minimum promoter in the HEK 293T cells. RORgammat-mediated IL-17A promoter activation was suppressed by forced expression of Foxp3. Foxp3 directly interacted with RORgammat through exon 2 region of Foxp3. The exon 2 region and forkhead (FKH) domain of Foxp3 were necessary for the suppression of RORgammat-mediated IL-17A promoter activation. We propose that induction of Foxp3 is the mechanism for the suppression of Th17 and polarization into inducible Treg.  相似文献   

5.
Lubberts E 《Cytokine》2008,41(2):84-91
Interleukin-17A (IL-17A) contributes to the pathogenesis of arthritis. Data from experimental arthritis indicate IL-17 receptor signaling as a critical pathway in turning an acute synovitis into a chronic destructive arthritis. The identification of six IL-17 family members (IL-17A-F) may extend the role of this novel cytokine family in the pathogenesis of chronic destructive joint inflammation. Whether the successful anti-IL-17A cytokine therapy in murine arthritis can be effectively translated to human arthritis need to be tested in clinical trials in humans. Interestingly, IL-17A and IL-17F are secreted by the novel T helper subset named Th17. This novel pathogenic T cell population induces autoimmune inflammation in mice and is far more efficient at inducing Th1-mediated autoimmune inflammation in mice than classical Th1 cells (IFN-gamma). In addition to IL-17A and IL-17F, Th17 cells are characterized by expression of IL-6, TNF, GM-CSF, IL-21, IL-22 and IL-26. Th17 cells have been established as a separate lineage of T helper cells in mice distinct from conventional Th1 and Th2 cells. Whether this also applies to human Th17 and whether RA is a Th1 or a Th17 mediated disease is still not clear. This review summarizes the findings about the role of IL-17 in arthritis and discusses the impact of the discovery of the novel Th17 cells for arthritis. Further studies are needed to unravel the role of Th17 cells and the interplay of IL-17 and other Th17 cytokines in the pathogenesis of arthritis and whether regulating Th17 cell activity will have additional value compared to neutralizing IL-17A activity alone. This might help to reach the ultimate goal not only to treat RA patients but to prevent the development of this crippling disease.  相似文献   

6.
7.
8.
9.
10.
IL-17-producing T cells (Th17) have been identified in mice as a distinct lineage of CD4+ T helper cells. Since their discovery, efforts have been made in characterizing human Th17 cells and the factors involved in their differentiation and in understanding the role these cells play in protective immunity and autoimmune diseases.  相似文献   

11.
Dipeptidylpeptidase IV (CD26) is a multifunctional ectoenzyme involved in T cell activation that has been implicated in autoimmune pathophysiology. Because IL-17-producing CD4(+) T cells (Th17 cells) are important mediators of autoimmune disease, we analyzed the expression of CD26 and its enzymatic function on human Th17 cells. Analysis of CD26 expression on different CD4(+) T helper subsets showed that CD26 expression is highest on CD4(+) T cells producing type 17 cytokines (e.g., IL-22, IL-17, GM-CSF, or TNF) compared with Th1, Th2, and regulatory T cells. Phenotypic analysis revealed that CD26(++)CD4(+) T cells express the type 17 differentiation molecules CD161, CCR6, lL-23R, and retinoic acid-related orphan receptor-γt. Furthermore, sorted CD26(++)CD4(+) T cells contain >90-98% of Th17 cells, indicating that CD26(++) T cells harbor the Th17 lineage. A comparison with CD161 and CCR6 indicated that analysis of CD26 coexpression may improve the phenotypic characterization of Th17 cells. Of note, CD26(++) Th17 cells are enriched in the inflamed tissue of patients with hepatitis and inflammatory bowel disease. Functional analysis in migration assays revealed that CD26 expressed on Th17 cells is enzymatically active. Indeed, CD26 negatively regulates the chemotactic CD4(+) T cell response to the inflammatory chemokines CXCL9-12 that can be restored by pharmacological blockade of the enzymatic center of CD26. In summary, these results strongly suggest that CD26 may contribute to the orchestration of the immune response by Th17 cells in human inflammatory diseases. They also suggest that the phenotypic analysis of Th17 cells may be facilitated by determination of CD26 expression.  相似文献   

12.
Zhao L  Tang Y  You Z  Wang Q  Liang S  Han X  Qiu D  Wei J  Liu Y  Shen L  Chen X  Peng Y  Li Z  Ma X 《PloS one》2011,6(4):e18909
T helper cells that produce IL-17 (Th17 cells) have recently been identified as the third distinct subset of effector T cells. Emerging data suggests that Th17 cells play an important role in the pathogenesis of many liver diseases by regulating innate immunity, adaptive immunity, and autoimmunity. In this study, we examine the role and mechanism of Th17 cells in the pathogenesis of autoimmune hepatitis (AIH). The serum levels of IL-17 and IL-23, as well as the frequency of IL-17+ cells in the liver, were significantly elevated in patients with AIH, compared to other chronic hepatitis and healthy controls. The hepatic expressions of IL-17, IL-23, ROR-γt, IL-6 and IL-1β in patients with AIH were also significantly increased and were associated with increased inflammation and fibrosis. IL-17 induces IL-6 expression via the MAPK signaling pathway in hepatocytes, which, in turn, may further stimulate Th17 cells and forms a positive feedback loop. In conclusion, Th17 cells are key effector T cells that regulate the pathogenesis of AIH, via induction of MAPK dependent hepatic IL-6 expression. Blocking the signaling pathway and interrupting the positive feedback loop are potential therapeutic targets for autoimmune hepatitis.  相似文献   

13.
14.
Recent reports have shown that IL-17-producing CD4+ T cells (Th17 cells) belong to a distinct helper T cell lineage and are critically involved in the pathogenesis of autoimmune diseases and allergies. However, the chemokine receptor profile of Th17 cells remains to be clarified. In this study, we report that human Th17 cells are identified as CCR2+CCR5- memory CD4+ T cells. Analysis of PBMC from healthy donors showed that CCR2+ cells produce much larger amounts of IL-17 than CCR2- cells, indicating the preferential expression of CCR2 on Th17 cells. Notably, CCR2+CCR5- memory CD4+ T cells produced a large amount of IL-17 and little IFN-gamma, whereas CCR2+CCR5+ cells reciprocally produced an enormous amount of IFN-gamma but little IL-17. Moreover, a higher expression of T-bet was seen in the CCR5+ memory T cells. These results indicate that absence of CCR5 distinguishes human Th17 cells from Th1 cells.  相似文献   

15.
IL -10 is widely accepted as a survival, proliferation, and differentiation factor for B cells. However, IL-10 deficiency accelerates disease progression as the result of autoantibody production in many autoimmune disease models. It was demonstrated that T follicular helper cells (T(FH) cells) play a key role in helping B cells that are secreting Abs. In this study, we demonstrated a regulatory role for IL-10R signaling on the development and B cell help function of T(FH) cells in vitro and in vivo. IL-1R subunit β-deficient (Il10rb(-/-)) Th cells were able to differentiate more readily into T(FH) cells, as well as secrete more IL-21 and IL-17 compared with wild-type Th cell-derived T(FH) cells. Increased IL-21 and IL-17 contributed to the enhanced B cell help functions of T(FH) cells. Further experiments demonstrated that IL-6 and IL-23 from dendritic cells in Il10rb(-/-) mice contributed to the differentiation of naive Th cells into T(FH) cells, as well as the generation of IL-21- and IL-17-producing T(FH) cells. Our results provide useful information for clarifying the immunoregulatory mechanisms associated with IL-10 deficiency in certain autoimmune disease models. This information could also be of benefit for the development of vaccines.  相似文献   

16.
17.
CD4(+) T cells are critical for host defense but are also major drivers of immune-mediated diseases. The classical view of Th1 and Th2 subtypes of CD4(+) T cells was recently revised by the identification of the Th17 lineage of CD4(+) T cells that produce IL-17, which have been found to be critical in the pathogenesis of autoimmune and other diseases. Mechanisms controlling the differentiation of Th17 cells have been well described, but few feasible targets for therapeutically reducing Th17 cells are known. The generation of Th17 cells requires IL-6 and activation of STAT3. During polarization of CD4(+) T cells to Th17 cells, we found that inhibition of glycogen synthase kinase-3 (GSK3) blocked IL-6 production, STAT3 activation, and polarization to Th17 cells. Polarization of CD4(+) T cells to Th17 cells increased by 10-fold the expression of GSK3β protein levels in Th17 cells, whereas GSK3β was unaltered in regulatory T cells. Diminishing GSK3 activity either pharmacologically or molecularly blocked Th17 cell production, and increasing GSK3 activity promoted polarization to Th17 cells. In vivo inhibition of GSK3 in mice depleted constitutive Th17 cells in intestinal mucosa, blocked Th17 cell generation in the lung after Francisella tularensis infection, and inhibited the increase in spinal cord Th17 cells and disease symptoms in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. These findings identify GSK3 as a critical mediator of Th17 cell production and indicate that GSK3 inhibitors provide a potential therapeutic intervention to control Th17-mediated diseases.  相似文献   

18.
近年研究发现了效应性辅助性T细胞的新亚群-Th17细胞,它主要分泌IL-17、IL-17F、IL-21和IL-22等细胞因子。Th17细胞及其效应分子被认为与自身免疫病和其他多种疾病相关。该文从Th17细胞的发现、人和小鼠Th17细胞的分化、Th17细胞的效应性因子及与健康和疾病的相关性几个方面对目前的研究进展进行了综述。  相似文献   

19.
Human Th17 cells     
The discovery in mice of a new lineage of CD4+ effector T helper (Th) cells that selectively produce IL-17 has provided exciting new insights into immune regulation, host defence, and the pathogenesis of autoimmune and other chronic inflammatory disorders. This population of CD4+ Th cells, which has been termed 'Th17', indeed plays an apparently critical role in the pathogenesis of some murine models of autoimmunity. Interestingly, murine Th17 cells share a common origin with Foxp3+ T regulatory cells, because both populations are produced in response to transforming growth factor-β, but they develop into Th17 cells only when IL-6 is simultaneously produced. Initial studies in humans have confirmed the existence of Th17 cells, but they have shown that the origin of these cells in humans differs from that in mice, with IL-1β and IL-23 being the major cytokines responsible for their development. Moreover, the presence in the circulation and in various tissues of Th cells that can produce both IL-17 and interferon-γ, as well as the flexibility of human Th17 clones to produce interferon-γ in addition to IL-17 in response to IL-12, suggests that there may be a developmental relationship between Th17 and Th1 cells, at least in humans. Resolving this issue has great implications in tems of establishing the respective pathogenic roles of Th1 and Th17 cells in autoimmune disorders. In contrast, it is unlikely that Th17 cells contribute to the pathogenesis of human allergic IgE-mediated disorders, because IL-4 and IL-25 (a powerful inducer of IL-4) are both potent inhibitors of Th17 cell development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号