首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classic studies in diverse organisms, including humans, have demonstrated that ageing is accompanied by marked alterations in both general and specific protein synthesis. These early observations established a link between the ageing process and the regulation of protein synthesis. However, two important questions remained. First, what are the molecular mechanisms underlying the changes in protein synthesis during ageing? Second, are these changes simply a consequence of ageing or do they actually have a causative role in senescent decline? We have recently shown that elimination of a specific isoform of the eukaryotic mRNA translation initiation factor 4E (eIF4E) that functions in somatic cells, reduces protein synthesis and extends lifespan in the nematode Caenorhabditis elegans. Depletion of eIF4E in the soma extends lifespan via a mechanism independent of the insulin/IGF pathway that modulates ageing in diverse species. Our findings suggest that regulation of protein synthesis is an important determinant of longevity and provide a framework for elucidating the mechanisms by which the rate of protein synthesis influences the process of ageing.  相似文献   

2.
Sex-determination gene and pathway evolution in nematodes   总被引:11,自引:0,他引:11  
The pathway that controls sexual fate in the nematode Caenorhabditis elegans has been well characterized at the molecular level. By identifying differences between the sex-determination mechanisms in C. elegans and other nematode species, it should be possible to understand how complex sex-determining pathways evolve. Towards this goal, orthologues of many of the C. elegans sex regulators have been isolated from other members of the genus Caenorhabditis. Rapid sequence evolution is observed in every case, but several of the orthologues appear to have conserved sex-determining roles. Thus extensive sequence divergence does not necessarily coincide with changes in pathway structure, although the same forces may contribute to both. This review summarizes recent findings and, with reference to results from other animals, offers explanations for why sex-determining genes and pathways appear to be evolving rapidly. Experimental strategies that hold promise for illuminating pathway differences between nematodes are also discussed.  相似文献   

3.
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell's responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist's point of view.  相似文献   

4.
A genetically defined pathway orchestrates the removal of 131 of the 1090 somatic cells generated during the development of the hermaphrodite nematode Caenorhabditis elegans. Regulation of apoptosis is highly evolutionarily conserved and the nematode cell death pathway is a valuable model for studying mammalian apoptotic pathways, the dysregulation of which can contribute to numerous diseases. The nematode caspase CED-3 is ultimately responsible for the destruction of worm cells in response to apoptotic signals, but it must first be activated by CED-4. CED-9 inhibits programmed cell death and considerable data have demonstrated that CED-9 can directly bind and inhibit CED-4. However, it has been suggested that CED-9 may also directly inhibit CED-3. In this study, we used a yeast-based system and biochemical approaches to explore this second potential mechanism of action. While we confirmed the ability of CED-9 to inhibit CED-4, our data argue that CED-9 can not directly inhibit CED-3.  相似文献   

5.
6.
Although the underlying mechanisms of longevity are not fully understood, it is known that mutation in genes that share similarities with those in humans involved in the insulin/insulin-like growth factor I (IGF-I) signal response pathway can significantly extend life span in diverse species, including yeast, worms, fruit flies, and rodents. Intriguingly, the long-lived mutants, ranging from yeast to mice, share some important phenotypic characteristics, including reduced insulin signaling, enhanced sensitivity to insulin, and reduced IGF-I plasma levels. Such genetic homologies and phenotypic similarities between insulin/IGF-I pathway mutants raise the possibility that the fundamental mechanism of aging may be evolutionarily conserved from yeast to mammals. Very recent findings also provide novel and intriguing evidence for the involvement of insulin and IGF-I in the control of aging and longevity in humans. In this study, we focus on how the insulin/IGF-I pathway controls yeast, nematode, fruit fly, and rodent life spans and how it is related to the aging process in humans to outline the prospect of a unifying mechanism in the genetics of longevity.  相似文献   

7.
By the mid 1970s, the mechanisms by which ageing can evolve had a secure theoretical basis in population genetics. Here, we discuss how subsequent evolutionary work has focussed on testing and extending this theory, and on attempting to integrate it with other emerging facets of the biology of ageing, such as genetic studies of long-lived mutants and of phenotypic plasticity in ageing, such as in response to nutritional status. We also describe how functional genomic studies are providing new insights into the evolutionary forces shaping genome evolution and lifespan control. Future challenges include understanding the biochemistry of longevity and how its failure generates ageing and associated diseases, and the determination of the genetic basis of lifespan evolution and the great plasticity that it displays.  相似文献   

8.
Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies.  相似文献   

9.
10.
Infection of plants by root-knot nematodes is often accompanied by physiological changes characteristic of ageing. Ultra-low tissue luminescence of infected plants indicated oxidation of cell-membrane lipids. Cells with membranes subjected to oxidation lose some of their capacity for water retention. Treating tomato and radish with lidocaine hydrochloride, an inhibitor of lipid oxidation, retarded above-ground symptoms of root-knot nematode infection and of ageing.  相似文献   

11.
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.  相似文献   

12.
BACKGROUND: Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway also has an essential developmental role. C. elegans possesses structural homologs of components of this pathway, and this observation raises the possibility that a Toll pathway might also function in nematodes to trigger defense mechanisms or to control development. RESULTS: We have generated and characterized deletion mutants for four genes supposed to function in a nematode Toll signaling pathway. These genes are tol-1, trf-1, pik-1, and ikb-1 and are homologous to the Drosophila melanogaster Toll, dTraf, pelle, and cactus genes, respectively. Of these four genes, only tol-1 is required for nematode development. None of them are important for the resistance of C. elegans to a number of pathogens. On the other hand, C. elegans is capable of distinguishing different bacterial species and has a tendency to avoid certain pathogens, including Serratia marcescens. The tol-1 mutants are defective in their avoidance of pathogenic S. marcescens, although other chemosensory behaviors are wild type. CONCLUSIONS: In C. elegans, tol-1 is important for development and pathogen recognition, as is Toll in Drosophila, but remarkably for the latter r?le, it functions in the context of a behavioral mechanism that keeps worms away from potential danger.  相似文献   

13.
Turning clustering loops: sex determination in Caenorhabditis elegans   总被引:4,自引:0,他引:4  
The nematode Caenorhabditis elegans has two sexes: males and hermaphrodites. Hermaphrodites are essentially female animals that produce sperm and oocytes. In the past few years tremendous progress has been made towards understanding how sexual identity is controlled in the worm. These analyses have revealed that the regulatory pathway controlling sexual development is far from linear and that it contains a number of loops and branches that play crucial roles in regulating sexual development. This review summarizes our current understanding of the mechanisms that regulate sexual cell fate in C. elegans.  相似文献   

14.
Complex defence signalling pathways, controlled by different hormones, are known to be involved in the reaction of plants to a wide range of biotic and abiotic stress factors. Here, we studied the differential expression of genes involved in stress and defence responses in systemic tissue of rice infected with the root knot nematode (RKN) Meloidogyne graminicola and the migratory root rot nematode Hirschmanniella oryzae, two agronomically important rice pathogens with very different lifestyles. qRT-PCR revealed that all investigated systemic tissues had significantly lower expression of isochorismate synthase, a key enzyme for salicylic acid production involved in basal defence and systemic acquired resistance. The systemic defence response upon migratory nematode infection was remarkably similar to fungal rice blast infection. Almost all investigated defence-related genes were up-regulated in rice shoots 3 days after root rot nematode attack, including the phenylpropanoid pathway, ethylene pathway and PR genes, but many of which were suppressed at 7 dpi. Systemic shoot tissue of RKN-infected plants showed similar attenuation of expression of almost all studied genes already at 3 dpi, with clear attenuation of the ethylene pathway and methyl jasmonate biosynthesis. These results provide an interesting starting point for further studies to elucidate how nematodes are able to suppress systemic plant defence mechanisms and the effect in multitrophic interactions.  相似文献   

15.
With the characterization of the Smads 5 years ago, it became possible to trace the TGFβ signal transduction pathway from the plasma membrane to the nucleus. Since that time, many Smad interaction partners, cofactors and target genes have been identified using a variety of experimental approaches and model systems. Understanding how these partners generate tissue specificity and crosstalk between pathways is an ongoing pursuit for the field of TGFβ signal transduction. The nematode Caenorhabditis elegans provides a simple, genetically tractable model organism in which to address this goal. This review will examine progress towards the identification of cellular and molecular targets of TGFβ-related signaling in C. elegans.  相似文献   

16.
So far nine human aspartate-specific cysteine proteases (ASCPs) have been identified and cloned in our lab and others. Their sequence and structural homology to the nematode Ced-3 implicated them in the cell death pathway of mammalian cells. Recent evidence suggests that ASCPs initiate apoptosis by acting at or near the cell death effector level. However, it is not clear whether the activity of one or several of these enzymes is necessary for execution of apoptosis. In addition, it is not yet clear how the proenzymes of ASCPs are activated or what triggers their activation. Execution of apoptosis in higher eukaryotes is apparently more complicated than in nematodes. It is most likely that in mammalian cells this process involves the coordinated action of multiple ASCPs and multiple redundant proteolytic pathways. J. Cell Biochem. 64:33–42. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.  相似文献   

18.
19.
The signal transduction pathways involved in regulating developmental arrest in the free-living nematode, Caenorhabditis elegans, are fairly well characterised. However, much less is known about how these processes may influence the developmental timing and maturation in helminth parasites. Here, we provide an overview of two signalling pathways implicated in the regulation of dauer larva formation in C. elegans, the insulin-like signalling pathway and the transforming growth factor-beta pathway, and explore what is known about these signalling pathways in a variety of parasitic helminths. Understanding the differences about how these pathways are affected by environmental cues in free-living versus parasitic species of helminths may provide insights into novel mechanisms for the control or prevention of helminth-induced disease.  相似文献   

20.
Osteoarthritis is the most prevalent form of arthritis in the world. With the progressive ageing of the population, it is becoming a major public health problem. The involvement of certain signaling pathways, such as the Notch pathway, during cartilage pathology has been reported. In this review, we report on studies that investigated the expression pattern of the Notch family members in articular cartilage and the eventual involvement of this pathway in the modulation of the physiology and pathology of chondrocytes. Temporal and/or spatial modulation of this signaling pathway may help these cells to synthesize a new functional extracellular matrix and restore the functional properties of the articular cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号