首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abscisic acid (ABA), a plant stress hormone, has a chiral center (C1') in its molecule, yielding the enantiomers (1'S)-(+)-ABA and (1'R)-(-)-ABA during chemical synthesis. ABA 8'-hydroxylase (CYP707A), which is the major and key P450 enzyme in ABA catabolism in plants, catalyzes naturally occurring (1'S)-(+)-enantiomer, whereas it does not recognize naturally not occurring (1'R)-(-)-enantiomer as either a substrate or an inhibitor. Here we report a structural ABA analogue (AHI1), whose both enantiomers bind to recombinant Arabidopsis CYP707A3, in spite of stereo-structural similarity to ABA. The difference of AHI1 from ABA is the absence of the side-chain methyl group (C6) and lack of the alpha,beta-unsaturated carbonyl (C2'C3'-C4'O) in the six-membered ring. To explore which moiety is responsible for asymmetrical binding by CYP707A3, we synthesized and tested ABA analogues that lacked each moiety. Competitive inhibition was observed for the (1'R) enantiomers of these analogues in the potency order of (1'R,2'R)-(-)-2',3'-dihydro-4'-deoxo-ABA (K(I)=0.45 microM)>(1'R)-(-)-4'-oxo-ABA (K(I)=27 microM)>(1'R)-(-)-6-nor-ABA and (1'R,2'R)-(-)-2',3'-dihydro-ABA (no inhibition). In contrast to the (1'R)-enantiomers, the inhibition potency of the (1'S)-analogues declined with the saturation of the C2',C3'-double bond or with the elimination of the C4'-oxo moiety. These findings suggest that the C4'-oxo moiety coupled with the C2',C3'-double bond is the significant key functional group by which ABA 8'-hydroxylase distinguishes (1'S)-(+)-ABA from (1'R)-(-)-ABA.  相似文献   

2.
The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.  相似文献   

3.
4.
A major catabolic enzyme of the plant hormone abscisic acid (ABA) is the cytochrome P450 monooxygenase ABA 8'-hydroxylase. For designing a specific inhibitor of this enzyme, the substrate specificity and inhibition of CYP707A3, an ABA 8'-hydroxylase from Arabidopsis thaliana, was investigated using 45 structural analogues of ABA and compared to the structural requirements for ABA activity. Substrate recognition by the enzyme strictly required the 6'-methyl groups (C-8' and C-9'), which were unnecessary for ABA activity, whereas elimination of the 3-methyl (C-6) and 1'-hydroxyl groups, which significantly affected ABA activity, had little effect on the ability of analogues to competitively inhibit the enzyme. Fluorination at C-8' and C-9' resulted in resistance to 8'-hydroxylation and competitive inhibition of the enzyme. In particular, 8',8'-difluoro-ABA and 9',9'-difluoro-ABA yielded no enzyme reaction products and strongly inhibited the enzyme (K(I) = 0.16 and 0.25 microM, respectively).  相似文献   

5.
We designed and synthesized AHI4 that has an axial hydroxyl group instead of geminal methyl groups at C-6' of AHI1, previously reported as a lead compound for the development of non-azole inhibitors of ABA 8'-hydroxylase. (+)-AHI4 competitively inhibited 8'-hydroxylation of ABA by recombinant CYP707A3. The K(I) value was found to be 0.14 microM, 10-fold less than that of (+)-AHI1, suggesting that enzyme affinity increased by a factor of 10 due to substitution of the hydroxyl group by the geminal methyls at C-6'. This finding should assist in the design of more effective, non-azole ABA 8'-hydroxylase inhibitors.  相似文献   

6.
(1'S*,2'S*)-(+/-)-6-Nor-2',3'-dihydro-4'-deoxo-ABA (2) was designed and synthesized as a candidate lead compound for developing a potent and specific inhibitor of ABA 8'-hydroxylase. This compound acted as an effective competitive inhibitor of the enzyme, with a K(I) value of 0.40microM, without exhibiting ABA activity. However, compound 2 also functioned as an enzyme substrate, making it a short-lived inhibitor. The 8'-difluorinated derivative of 2 (4) was synthesized as a long-lasting alternative. Compound 4 resisted 8'-hydroxylation, but inhibited ABA 8'-hydroxylation as effectively as 2. These results suggest that compound 2 is a useful lead compound for the future design and development of an ideal ABA 8'-hydroxylase inhibitor.  相似文献   

7.
This study analyses the activity of an Arabidopsis thaliana UDP-glycosyltransferase, UGT71B6 (71B6), towards abscisic acid (ABA) and its structural analogues. The enzyme preferentially glucosylated ABA and not its catabolites. The requirement for a specific chiral configuration of (+)-ABA was demonstrated through the use of analogues with the chiral centre changed or removed. The enzyme was able to accommodate extra bulk around the double bond of the ABA ring but not alterations to the 8'- and 9'-methyl groups. Interestingly, the ketone of ABA was not required for glucosylation. Bioactive analogues, resistant to 8'-hydroxylation, were also poor substrates for conjugation by UGT71B6. This suggests the compounds may be resistant to both pathways of ABA inactivation and may, therefore, prove to be useful agrochemicals for field applications.  相似文献   

8.
The effect of (+) (ABA) and (?)-abscisic acid and nine ABA metabolites, precursors or derivatives on radial water movement through maize roots, was investigated using a suction technique (Freundl and others 1998). (+)-ABA, (+)- and (?)-abscisyl aldehyde, (+)-8?-hydroxymethyl ABA, (+)-8?-methylene, and (+)-8?-acetylene ABA stimulated radial water transport. (?)-ABA, phaseic acid, and (+)-8?-acetylene methyl ABA were ineffective. ELISA analysis for ABA detected and apparent increase of free ABAxyl in xylem sap of excised root systems that were perfused with either (+)-abscisyl aldehyde, (+)-8?-methylene, (+)8?-acetylene-ABA, or ABA-glucose ester. The analogues (+)-8?-hydroxymethyl ABA and (?)-abscisyl aldehyde passed the cortex of maize roots without changing the ABAxyl. The data from this study permit conclusions about the structural requirements for hormonal regulation of hydraulic conductivity.  相似文献   

9.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   

10.
A protein designated ABAP1 and encoded by a novel gene (GenBank accession number AF127388) was purified and shown to specifically bind abscisic acid (ABA). ABAP1 protein is a 472-amino acid polypeptide containing a WW protein interaction domain and is induced by ABA in barley aleurone layers. Polyclonal antiidiotypic antibodies (AB2) cross-reacted with purified ABAP1 and with a corresponding 52-kDa protein associated with membrane fractions of ABA-treated barley aleurones. ABAP1 genes were detected in diverse monocot and dicot species, including wheat, tobacco, alfalfa, garden pea, and oilseed rape. The recombinant ABAP1 protein optimally bound (3)H-(+)-ABA at neutral pH. Denatured ABAP1 protein did not bind (3)H-(+)-ABA, nor did bovine serum albumin. The maximum specific binding as shown by Scatchard plot analysis was 0.8 mol of ABA mol(-1) protein with a linear function of r(2) = 0.94, an indication of one ABA-binding site with a dissociation constant (K(d)) of 28 x 10(-9) m. ABA binding in aleurone plasma membranes showed a maximum binding capacity of 330 nmol of ABA g(-1) protein with a K(d) of 26.5 x 10(-9) m. The similarities in the dissociation constants for ABA binding of the recombinant protein and that of the plasma membranes suggest that the protein within the plasma membrane fraction is the native form of ABAP1. The stereospecificity of ABAP1 was established by the incapability of ABA analogs and metabolites, including (-)-ABA, trans-ABA, phaseic acid, dihydrophaseic acid, and (+)-abscisic acid-glucose ester, to displace (3)H-(+)-ABA bound to ABAP1. However, two ABA precursors, (+)-ABA aldehyde and (+)-ABA alcohol, were able to displace (3)H-(+)-ABA, an indication that the structural requirement of ABAP1 at the C-1 position is not strict. Our data show that ABAP1 exerts high binding affinity for ABA. The interaction is reversible, follows saturation kinetics, and has stereospecificity, thus meeting the criteria for an ABA-binding protein.  相似文献   

11.
The present experiment, involving both the in vivo injection of abscislc acid (ABA) Into apple (Malus domestica Brohk.) fruits and the in vivo Incubation of fruit tissues in ABA-contalnlng medium, revealed that ABA activates both soluble and cell wall-bound acid invertases. Immunoblottlng and enzyme-linked Immunosorbent assays showed that this ABA-induced acid invertase activation is Independent of the amount of enzyme present. The acid Invertase activation induced by ABA is dependent on medium pH, time course, ABA dose, living tissue and developmental stage. Two isomers of cls-(+)-ABA, (-)-ABA and trans- ABA, had no effect on acid invertases, showing that ABA-induced acid invertase activation is specific to physiologically active cis-(+)ABA. Protein kinase inhlbltors K252a and H7 as well as acid phosphatase Increased the ABA-Induced effects. These data indicate that ABA specifically activates both soluble and cell wall-bound acid Invertases by a posttranslational mechanism probably Involving reversible protein phosphorylatlon, and this may be one of the mechanisms by which ABA Is Involved In regulating fruit development.  相似文献   

12.
13.
Yellow-cedar (Chamaecyparis nootkatensis [D. Don] Spach) seeds exhibit prolonged coat-imposed dormancy following their dispersal from the parent plant. Analyses were undertaken using S-(+)-[(3)H] abscisic acid (ABA) to monitor the capacity of embryos to metabolize ABA following their isolation from seeds subjected to various dormancy-breaking and control treatments. Radiolabelled phaseic acid (PA) and dihydrophaseic acid (DPA) were detected in embryos and, to a greater extent in the surrounding media, by 48 h regardless of whether the embryos had been excised from seed previously subjected to only a 3 d soak or to a full dormancy-breaking treatment. Of the two enantiomers of ABA, only the natural S-(+)-ABA effectively inhibited germination of isolated embryos. A metabolism-resistant synthetic ABA analogue S-[8',8',8',9',9',9']-hexadeuteroabscisic acid, S-(+)-d6-ABA, consistently slowed the germination rate of excised embryos to a greater extent than that caused by natural S-(+)-ABA. The deuterium-labelled ring methyl groups of the analogue made it more resistant to oxidation by yellow-cedar embryos and thus rendered the analogue more persistent and possessing greater activity. With increasing time of exposure to moist chilling, yellow-cedar embryos became increasingly insensitive to both ABA and to the analogue. Subjecting seed to chemical treatments (GA(3) in combination with 1-propanol) prior to moist chilling strongly enhanced the germinability of whole seeds. This treatment also had a relatively greater impact on ABA metabolism than did moist chilling alone, as indicated by a greater capacity of S-(+)-d6-ABA to inhibit the germination of embryos as compared to S-(+)-ABA. Moist chilling was most critical for reduced ABA sensitivity of embryos. A change in the embryo's ability to metabolize ABA and reduced embryo sensitivity to ABA are two factors associated with dormancy termination of whole seeds of yellow cedar; a change in only one of these factors is insufficient to elicit high germinability.  相似文献   

14.
In plants, the level of abscisic acid (ABA) is determined by synthesis and catabolism. Hydroxylation of ABA at the 8' position is the key step in ABA catabolism. This reaction is catalyzed by ABA 8'-hydroxylase, a cytochrome P450 (CYP). The cDNAs of PvCYP707A1 and PvCYP707A2 were isolated from bean (Phaseolus vulgaris L.) axes treated with (+)-ABA and that of PvCYP707A3 from dehydrated bean leaves. The recombinant PvCYP707A proteins expressed in yeast were biochemically characterized. Yeast strains over-expressing any of the three PvCYP707As were able to convert ABA to phaseic acid (PA). The microsomal fractions from these yeast strains also exhibited ABA 8'-hydroxylase activity. Expression of PvCYP707A3 in primary leaves was strongly increased by water stress, whereas PvCYP707A1 and PvCYP707A2 mRNA levels were rapidly increased by rehydration of water-stressed leaves. Northern blot analysis of PvCYP707As in bean showed a high level of expression in the mature fruits, senescent leaves, roots, seed coats and axes. All three PvCYP707As were expressed at varying intensities throughout seed development. Imbibed seeds also had high PvCYP707A mRNA levels. Thus, expression of PvCYP707As is both environmentally and developmentally regulated. Transgenic Nicotiana sylvestris plants over-expressing PvCYP707As displayed a wilty phenotype, and had reduced ABA levels and increased PA levels. These results demonstrate that expression of PvCYP707As is the major mechanism by which ABA catabolism is regulated in bean.  相似文献   

15.
To examine the effect of the minor abscisic acid (ABA) metabolite 7'-hydroxy-ABA on Arabidopsis ABA 8'-hydroxylase (CYP707A3), we developed a novel and facile, four-step synthesis of 7'-hydroxy-ABA from alpha-ionone. Structural analogues of 7'-hydroxy-ABA, 1'-deoxy-7'-hydroxy-ABA, and 7'-oxo-ABA were also synthesized to evaluate the role of the 7'-hydroxyl group on binding to the enzyme. The result of enzyme inhibition assay suggests that the local polarity at C-7', neither steric bulkiness nor overall molecular hydrophilicity, would be the major reason why (+)-7'-hydroxy-ABA is not a potent inhibitor of CYP707A3.  相似文献   

16.
The plant growth retardant S-(+)-uniconazole (UNI-OH) is a strong inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, stomatal closure, flowering, seed dormancy, and other physiological events. In the present study, we focused on the two polar sites of UNI-OH and synthesized 3- and 2'-modified analogs. Conformational analysis and an in vitro enzyme inhibition assay yielded new findings on the structure-activity relationship of UNI-OH: (1) by substituting imidazole for triazole, which increases affinity to heme iron, we identified a more potent compound, IMI-OH; (2) the polar group at the 3-position increases affinity for the active site by electrostatic or hydrogen-bonding interactions; (3) the conformer preference for a polar environment partially contributes to affinity for the active site. These findings should be useful for designing potent azole-containing specific inhibitors of ABA 8'-hydroxylase.  相似文献   

17.
Optical isomers and racemic mixtures of abscisic acid (ABA) and the ABA metabolites abscisyl alcohol (ABA alc), abscisyl aldehyde (ABA ald), phaseic acid (PA), and 7[prime]hydroxyABA (7[prime]OHABA) were studied to determine their effects on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell-suspension cultures. A dihydroABA analog (DHABA) series that cannot be converted to PA was also investigated. Racemic ABA, (+)-ABA, ([plus or minus])-DHABA, and (+)-DHABA were the most active in inducing freezing tolerance, (-)-ABA, ([plus or minus])-7[prime]OHBA, (-)-DHABA, ([plus or minus])-ABA ald, and ([plus or minus])-ABA alc had a moderate effect, and PA was inactive. If the relative cellular water content decreased below 82%, dehydrin gene expression increased. Except for (-)-ABA, increased expression of dehydrin genes and increased accumulation of responsive to ABA (RAB) proteins were linked to increased levels of frost tolerance. PA had no effect on the induction of RAB proteins; however, ([plus or minus])- and (+)-DHABA were both active, which suggests that PA is not involved in freezing tolerance. Both (+)-ABA and (-)-ABA induced dehydrin genes and the accumulation of RAB proteins to similar levels, but (-)-ABA was less effective than (+)-ABA at increasing freezing tolerance. The (-)-DHABA analog was inactive, implying that the ring double bond is necessary in the (-) isomers for activating an ABA response.  相似文献   

18.
We report here the synthesis and biological activity of a new persistent abscisic acid (ABA) analog, 8[prime]-methylene ABA. This ABA analog has one additional carbon atom attached through a double bond to the 8[prime]-carbon of the ABA molecule. (+)-8[prime]-Methylene ABA is more active than the natural hormone (+)-ABA in inhibiting germination of cress seed and excised wheat embryos, in reducing growth of suspension-cultured corn cells, and in reducing transpiration in wheat seedlings. The (+)-8[prime]-methylene analog is slightly weaker than (+)-ABA in increasing expression of ABA-inducible genes in transgenic tobacco, but is equally active in stimulating a transient elevation of the pH of the medium of corn cell cultures. In corn cells, both (+)-ABA and (+)-8[prime]-methylene ABA are oxidized at the 8[prime] position. ABA is oxidized to phaseic acid and (+)-8[prime]-methylene ABA is converted more slowly to two isomeric epoxides. The alteration in the ABA structure causes the analog to be metabolized more slowly than ABA, resulting in longer-lasting and more effective biological activity relative to ABA.  相似文献   

19.
20.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号