首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of clathrin in retention of Golgi membrane proteins has been investigated. Prior work showed that a precursor form of the peptide mating pheromone alpha-factor is secreted by Saccharomyces cerevisiae cells which lack the clathrin heavy chain gene (CHC1). This defect can be accounted for by the observation that the Golgi membrane protein Kex2p, which initiates maturation of alpha-factor precursor, is mislocalized to the cell surface of mutant cells. We have examined the localization of two additional Golgi membrane proteins, dipeptidyl aminopeptidase A (DPAP A) and guanosine diphosphatase (GDPase) in clathrin-deficient yeast strains. Our findings indicate that DPAP A is aberrantly transported to the cell surface but GDPase is not. In mutant cells carrying a temperature-sensitive allele of CHC1 (chc1-ts), alpha-factor precursor appears in the culture medium within 15 min, and Kex2p and DPAP A reach the cell surface within 30 min, after imposing the nonpermissive temperature. In contrast to these immediate effects, a growth defect is apparent only after 2 h at the nonpermissive temperature. Also, sorting of the vacuolar membrane protein, alkaline phosphatase, is not affected in chc1-ts cells until 2 h after the temperature shift. A temperature-sensitive mutation which blocks a late stage of the secretory pathway, sec1, prevents the appearance of mislocalized Kex2p at the cell surface of chc1-ts cells. We propose that clathrin plays a direct role in the retention of specific proteins in the yeast Golgi apparatus, thereby preventing their transport to the cell surface.  相似文献   

2.
The role of clathrin light chain phosphorylation in regulating clathrin function has been examined in Saccharomyces cerevisiae. The phosphorylation state of yeast clathrin light chain (Clc1p) in vivo was monitored by [32P]phosphate labeling and immunoprecipitation. Clc1p was phosphorylated in growing cells and also hyperphosphorylated upon activation of the mating response signal transduction pathway. Mating pheromone-stimulated hyperphosphorylation of Clc1p was dependent on the mating response signal transduction pathway MAP kinase Fus3p. Both basal and stimulated phosphorylation occurred exclusively on serines. Mutagenesis of Clc1p was used to map major phosphorylation sites to serines 52 and 112, but conversion of all 14 serines in Clc1p to alanines [S(all)A] was necessary to eliminate phosphorylation. Cells expressing the S(all)A mutant Clc1p displayed no defects in Clc1p binding to clathrin heavy chain, clathrin trimer stability, sorting of a soluble vacuolar protein, or receptor-mediated endocytosis of mating pheromone. However, the trans-Golgi network membrane protein Kex2p was not optimally localized in mutant cells. Furthermore, pheromone treatment exacerbated the Kex2p localization defect and caused a corresponding defect in Kex2p-mediated maturation of the alpha-factor precursor. The results reveal a novel requirement for clathrin during the mating response and suggest that phosphorylation of the light chain subunit modulates the activity of clathrin at the trans-Golgi network.  相似文献   

3.
The Kex2 protein of the yeast Saccharomyces cerevisiae is a membrane-bound, Ca2(+)-dependent serine protease that cleaves the precursors of the mating pheromone alpha-factor and the M1 killer toxin at pairs of basic residues during their transport through the secretory pathway. To begin to characterize the intracellular locus of Kex2-dependent proteolytic processing, we have examined the subcellular distribution of Kex2 protein in yeast by indirect immunofluorescence. Kex2 protein is located at multiple, discrete sites within wild-type yeast cells (average, 3.0 +/- 1.7/mother cell). Qualitatively similar fluorescence patterns are observed at elevated levels of expression, but no signal is found in cells lacking the KEX2 gene. Structures containing Kex2 protein are not concentrated at a perinuclear location, but are distributed throughout the cytoplasm at all phases of the cell cycle. Kex2-containing structures appear in the bud at an early, premitotic stage. Analysis of conditional secretory (sec) mutants demonstrates that Kex2 protein ordinarily progresses from the ER to the Golgi but is not incorporated into secretory vesicles, consistent with the proposed localization of Kex2 protein to the yeast Golgi complex.  相似文献   

4.
Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery.  相似文献   

5.
We have investigated the localization of Kex1p, a type I transmembrane carboxypeptidase involved in precursor processing within the yeast secretory pathway. Indirect immunofluorescence demonstrated the presence of Kex1p in a punctate organelle resembling the yeast Golgi apparatus as identified by Kex2p and Sec7p (Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller, and R. Schekman. 1991. J. Cell Biol. 112:27-37). Glycosylation studies of Kex1p were consistent with a Golgi location, as Kex1p was progressively N-glycosylated in an MNN1-dependent manner. To address the basis of Kex1p targeting to the Golgi apparatus, we examined the cellular location of a series of carboxy-terminal truncations of the protein. The results indicate that a cytoplasmically exposed carboxy-terminal domain is required for retention of this membrane protein within the Golgi apparatus. Deletions of the retention region or overproduction of wild-type Kex1p led to mislocalization of Kex1p to the vacuolar membrane. This unexpected finding is discussed in terms of models involving either the vacuole as a default destination for membrane proteins, or by endocytosis to the vacuole following their default localization to the plasma membrane.  相似文献   

6.
Bensen ES  Costaguta G  Payne GS 《Genetics》2000,154(1):83-97
Clathrin is involved in selective protein transport at the Golgi apparatus and the plasma membrane. To further understand the molecular mechanisms underlying clathrin-mediated protein transport pathways, we initiated a genetic screen for mutations that display synthetic growth defects when combined with a temperature-sensitive allele of the clathrin heavy chain gene (chc1-521) in Saccharomyces cerevisiae. Mutations, when present in cells with wild-type clathrin, were analyzed for effects on mating pheromone alpha-factor precursor maturation and sorting of the vacuolar protein carboxypeptidase Y as measures of protein sorting at the yeast trans-Golgi network (TGN) compartment. By these criteria, two classes of mutants were obtained, those with and those without defects in protein sorting at the TGN. One mutant with unaltered protein sorting at the TGN contains a mutation in PTC1, a type 2c serine/threonine phosphatase with widespread influences. The collection of mutants displaying TGN sorting defects includes members with mutations in previously identified vacuolar protein sorting genes (VPS), including the dynamin family member VPS1. Striking genetic interactions were observed by combining temperature-sensitive alleles of CHC1 and VPS1, supporting the model that Vps1p is involved in clathrin-mediated vesicle formation at the TGN. Also in the spectrum of mutants with TGN sorting defects are isolates with mutations in the following: RIC1, encoding a product originally proposed to participate in ribosome biogenesis; LUV1, encoding a product potentially involved in vacuole and microtubule organization; and INP53, encoding a synaptojanin-like inositol polyphosphate 5-phosphatase. Disruption of INP53, but not the related INP51 and INP52 genes, resulted in alpha-factor maturation defects and exacerbated alpha-factor maturation defects when combined with chc1-521. Our findings implicate a wide variety of proteins in clathrin-dependent processes and provide evidence for the selective involvement of Inp53p in clathrin-mediated protein sorting at the TGN.  相似文献   

7.
Deletion of the kexin gene (KEX2) in Candida albicans has a pleiotropic effect on phenotype and virulence due partly to a defect in the expression of two major virulence factors: the secretion of active aspartyl proteinases and the formation of hyphae. kex2/kex2 mutants are highly attenuated in a mouse systemic infection model and persist within cultured macrophages for at least 24 h without causing damage. Pathology is modest, with little disruption of kidney matrix. The infecting mutant cells are largely confined to glomeruli, and are aberrant in morphology. The complex phenotype of the deletion mutants reflects a role for kexin in a wide range of cellular processes. Taking advantage of the specificity of Kex2p cleavage, an algorithm we developed to scan the 9168 open reading frames in Assembly 6 of the C. albicans genome identified 147 potential substrates of Kex2p. These include all previously identified substrates, including eight secreted aspartyl proteinases, the exoglucanase Xog1p, the immunodominant antigen Mp65, and the adhesin Hwp1p. Other putative Kex2p substrates identified include several adhesins, cell wall proteins, and hydrolases previously not implicated in pathogenesis. Kexins also process fungal mating pheromones; a modification of the algorithm identified a putative mating pheromone with structural similarities to Saccharomyces cerevisiae alpha-factor.  相似文献   

8.
Heterologous proteins secreted by yeast and fungal expression hosts are occasionally degraded at basic amino acids. We cloned Pichia pastoris homologs of the Saccharomyces cerevisiae basic residue-specific endoproteases Kex2 and Yps1 to evaluate their involvement in the degradation of a secreted mammalian gelatin. Disruption of the P. pastoris KEX2 gene prevented proteolysis of the foreign protein at specific monoarginylic sites. The S. cerevisiae alpha-factor preproleader used to direct high-level gelatin secretion was correctly processed at its dibasic site in the absence of the prototypical proprotein convertase Kex2. Disruption of the YPS1 gene had no effect on gelatin degradation or processing of the alpha-factor propeptide. When both the KEX2 and YPS1 genes were disrupted, correct precursor maturation no longer occurred. The different substrate specificities of both proteases and their mutual redundancy for propeptide processing indicate that P. pastoris kex2 and yps1 single-gene disruptants can be used for the alpha-factor leader-directed secretion of heterologous proteins otherwise degraded at basic residues.  相似文献   

9.
The prepro sequence of the yeast prepro-alpha-factor, usually referred to as the alpha-factor leader, has often been used for the efficient secretion of heterologous proteins from the yeast Saccharomyces cerevisiae. The alpha-factor leader consists of a 19-amino acid N-terminal pre or signal sequence followed by a 66-amino acid proregion. After removal of the signal sequence during membrane translocation, the proregion is cleaved from the precursor protein by the Kex2 endoprotease only in a late Golgi compartment. Here we report that a modified Kex2 enzyme, containing at the C-terminus the HDEL tetrapeptide, cleaves the proregion from the alpha-factor leader--human insulin like growth factor-1 fusion protein in the endoplasmic reticulum. The processing of pro-proteins earlier in the secretion pathway could be helpful in defining the cellular function of the proregions present naturally in various eucaryotic precursor proteins.  相似文献   

10.
ADP-ribosylation factor appears to regulate the budding of both COPI and clathrin-coated transport vesicles from Golgi membranes. An arf1Delta synthetic lethal screen identified SWA3/DRS2, which encodes an integral membrane P-type ATPase and potential aminophospholipid translocase (or flippase). The drs2 null allele is also synthetically lethal with clathrin heavy chain (chc1) temperature-sensitive alleles, but not with mutations in COPI subunits or other SEC genes tested. Consistent with these genetic analyses, we found that the drs2Delta mutant exhibits late Golgi defects that may result from a loss of clathrin function at this compartment. These include a defect in the Kex2-dependent processing of pro-alpha-factor and the accumulation of abnormal Golgi cisternae. Moreover, we observed a marked reduction in clathrin-coated vesicles that can be isolated from the drs2Delta cells. Subcellular fractionation and immunofluorescence analysis indicate that Drs2p localizes to late Golgi membranes containing Kex2p. These observations indicate a novel role for a P-type ATPase in late Golgi function and suggest a possible link between membrane asymmetry and clathrin function at the Golgi complex.  相似文献   

11.
The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.  相似文献   

12.
Kex2 protease processes pro-alpha-factor in a late Golgi compartment in Saccharomyces cerevisiae. The first approximately 30 residues of the 115 amino acid CO2H-terminal cytosolic tail (C-tail) of the Kex2 protein (Kex2p) contain a Golgi retention signal that resembles coated-pit localization signals in mammalian cell surface receptors. Mutation of one (Tyr713) of two tyrosine residues in the C-tail or deletion of sequences adjacent to Tyr713 results in loss of normal Golgi localization. Surprisingly, loss of the Golgi retention signal resulted in transport of C-tail mutant Kex2p to the vacuole (yeast lysosome), as judged by kinetics of degradation and by indirect immunofluorescence. Analysis of the loss of Kex2 function in vivo after shutting off expression of wild-type or mutant forms proved that mutations that cause rapid vacuolar turnover do so by increasing the rate of exit of the enzyme from the pro-alpha-factor processing compartment. The most likely explanation for these results is that mutation of the Golgi retention signal in the C-tail results in transport of Kex2p to the vacuole by default. Wild-type Kex2p also was transported to the vacuole at an increased rate when overproduced, although apparently not due to saturation of a Golgi-retention mechanism. Instead, the wild-type and C-tail mutant forms of Kex2p may follow distinct paths to the vacuole.  相似文献   

13.
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.  相似文献   

14.
《The Journal of cell biology》1996,135(6):1789-1800
The yeast membrane protein Kex2p uses a tyrosine-containing motif within the cytoplasmic domain for localization to a late Golgi compartment. Because Golgi membrane proteins mislocalized to the plasma membrane in yeast can undergo endocytosis, we examined whether the Golgi localization sequence or other sequences in the Kex2p cytoplasmic domain mediate endocytosis. To assess endocytic function, the Kex2p cytoplasmic domain was fused to an endocytosis-defective form of the alpha-factor receptor. Ste2p. Like intact Ste2p, the chimeric protein, Stex22p, undergoes rapid endocytosis that is dependent on clathrin and End3p. Uptake of Stex22p does not require the Kex2p Golgi localization motif. Instead, the sequence NPFSD, located 37 amino acids from the COOH terminus, is essential for Stex22p endocytosis. Internalization was abolished when the N, P, or F residues were converted to alanine and severely impaired upon conversion of D to A. NPFSD restored uptake when added to the COOH terminus of an endocytosis-defective Ste2p chimera lacking lysine-based endocytosis signals present in wild-type Ste2p. An NPF sequence is present in the cytoplasmic domain of the a- factor receptor, Ste3p. Mutation of this sequence prevented pheromone- stimulated endocytosis of a truncated form of Ste3p. Our results identify NPFSD as a clathrin-dependent endocytosis signal that is distinct from the aromatic amino acid-containing Golgi localization motif and lysine-based, ubiquitin-dependent endocytosis signals in yeast.  相似文献   

15.
16.
Saccharomyces cerevisiae strains carrying vps18 mutations are defective in the sorting and transport of vacuolar enzymes. The precursor forms of these proteins are missorted and secreted from the mutant cells. Most vps18 mutants are temperature sensitive for growth and are defective in vacuole biogenesis; no structure resembling a normal vacuole is seen. A plasmid complementing the temperature-sensitive growth defect of strains carrying the vps18-4 allele was isolated from a centromere-based yeast genomic library. Integrative mapping experiments indicated that the 26-kb insert in this plasmid was derived from the VPS18 locus. A 4-kb minimal complementing fragment contains a single long open reading frame predicted to encode a 918-amino-acid hydrophilic protein. Comparison of the VPS18 sequence with the PEP3 sequence reported in the accompanying paper (R. A. Preston, H. F. Manolson, K. Becherer, E. Weidenhammer, D. Kirkpatrick, R. Wright, and E. W. Jones, Mol. Cell. Biol. 11:5801-5812, 1991) shows that the two genes are identical. Disruption of the VPS18/PEP3 gene (vps18 delta 1::TRP1) is not lethal but results in the same vacuolar protein sorting and growth defects exhibited by the original temperature-sensitive vps18 alleles. In addition, vps18 delta 1::TRP1 MAT alpha strains exhibit a defect in the Kex2p-dependent processing of the secreted pheromone alpha-factor. This finding suggests that vps18 mutations alter the function of a late Golgi compartment which contains Kex2p and in which vacuolar proteins are thought to be sorted from proteins destined for the cell surface. The Vps18p sequence contains a cysteine-rich, zinc finger-like motif at the COOH terminus. A mutant in which the first cysteine of this motif was changed to serine results in a temperature-conditional carboxypeptidase Y sorting defect shortly after a shift to nonpermissive conditions. We identified a similar cysteine-rich motif near the COOH terminus of another Vps protein, the Vps11/Pep5/End1 protein. Preston et al. (Mol. Cell. Biol. 11:5801-5812, 1991) present evidence that the Vps18/Pep3 protein colocalizes with the Vps11/Pep5 protein to the cytosolic face of the vacuolar membrane. Together with the similar phenotypes exhibited by both vps11 and vps18 mutants, this finding suggests that they may function at a common step during vacuolar protein sorting and that the integrity of their zinc finger motifs may be required for this function.  相似文献   

17.
In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia.  相似文献   

18.
Clathrin-associated protein (AP) complexes have been implicated in the assembly of clathrin coats and the selectivity of clathrin-mediated protein transport processes. We have identified a yeast gene, APS1, encoding a homolog of the small (referred to herein as sigma) subunits of the mammalian AP-1 complex. Sequence comparisons have shown that Aps1p is more similar to the sigma subunit of the Golgi-localized mammalian AP-1 complex than Aps2p, which is more related to the plasma membrane AP-2 sigma subunit. Like their mammalian counterparts, Aps1p and Aps2p are components of distinct, large (> 200 kDa) complexes and a significant portion of the Aps proteins co-fractionate with clathrin-coated vesicles during gel filtration chromatography. Unexpectedly, even though the evolutionary conservation of AP small subunits is substantial (50% identity between mammalian and yeast proteins), disruptions of APS1 (aps1 delta) and APS2 (aps2 delta), individually or in combination, elicit no detectable mutant phenotypes. These data indicate that the Aps proteins are not absolutely required for clathrin-mediated selective protein transport in cells expressing wild type clathrin. However, aps1 delta accentuated the slow growth and alpha-factor pheromone maturation defect of cells carrying a temperature-sensitive allele of clathrin heavy chain (Chc) (chc1-ts). In contrast, aps1 delta did not influence the effects of chc1-ts on vacuolar protein sorting or receptor-mediated endocytosis. The aps2 delta mutation resulted in a slight effect on chc1-ts cell growth but had no additional effects. The growth defect of cells completely lacking Chc was compounded by aps1 delta but not aps2 delta. These results comprise evidence that Aps1p is involved in a subset of clathrin functions at the Golgi apparatus. The effect of aps1 delta on cells devoid of clathrin function suggests that Aps1p also participates in clathrin-independent processes.  相似文献   

19.
The MF alpha 1 gene encodes a precursor, prepro-alpha-factor, that undergoes several proteolytic processing steps within the classical secretory pathway to produce the mature peptide pheromone, alpha-factor. To investigate the role of structural features of the MF alpha 1 precursor in alpha-factor production, we analyzed the effect of mf alpha 1 mutations that alter precursor structure in a number of ways. These mutations resulted in decreased alpha-factor secretion and intracellular accumulation of pro-alpha-factor. With the exception of the mutant lacking all three N glycosylation sites, the pro-alpha-factor forms that accumulated were core glycosylated but had not yet undergone the addition of outer chain carbohydrate. The delay, therefore, occurred at a step prior to the first proteolytic processing step involved in maturation of the precursor and was probably due to inefficient endoplasmic reticulum-to-Golgi transport. Elimination of all three N-glycosylation sites caused a delay in disappearance of intracellular precursor, and alpha-factor secretion was also slowed. These data indicate that N glycosylation is important but not essential for transport of the precursor through the secretory pathway. The decreased alpha-factor secretion and increased precursor accumulation seen with many different structural changes of pro-alpha-factor indicate that the secretory pathway is extremely sensitive to changes in precursor structure. This sensitivity could cause inefficient secretion of heterologous proteins and hybrids between MF alpha 1 and heterologous proteins in yeast cells.  相似文献   

20.
The use of yeast mutants to study the function and dynamics of clathrin-coated membranes has offered new insights into clathrin's role in the secretory pathway and has raised additional questions. Most strains of yeast can incur a disruption of clathrin heavy or light chain genes and remain viable. However, in rare cases, alleles of genes other than clathrin affect the viability of clathrin-deficient cells. The relationship of the products of these genes to clathrin awaits clarification. Phenotypic characterization of clathrin-deficient yeast mutants suggests that clathrin is not essential for the generation of secretory pathway transport vesicles at the ER or the Golgi complex but is required for the intracellular retention of a Golgi membrane protein, Kex2p. With this genetic evidence for clathrin's function in vivo, biochemical and genetic experiments can be designed to address the mechanism by which clathrin effects retention of Kex2p. Clathrin-deficient yeast carry out protein secretion, receptor-mediated endocytosis of mating pheromone, and efficient targeting of newly synthesized vacuolar proteins. These observations challenge aspects of clathrin's proposed involvement in protein transport through the secretory pathway and to lysosomes in mammalian cells. However, the differences are beginning to recede in the face of additional experiments; the formation of clathrin coated vesicles is no longer commonly thought to be obligately coupled to transport through the secretory pathway in mammalian cells (Rothman 1986; Brodsky, 1988), and the role of clathrin in retaining a Golgi membrane protein in yeast may have its precedents in receptor-mediated endocytosis by mammalian cells or in secretory granule formation in endocrine cells. A unified theory of clathrin function is emerging (Brodsky, 1988) which suggests that the clathrin coat assemblage (clathrin heavy and light chains and the associated proteins) acts as a facilitator of intracellular protein transport by sorting and concentrating cargo molecules. The results from studies of clathrin-deficient yeast support this theory. Future experiments will determine whether clathrin provides its functions at different transport stages in different organisms or whether all eukaryotic cells employ clathrin at the same stages of intracellular protein transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号