首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the pharmacological properties of an opioid antagonist, naltrexone (NTX), and tumor response was studied in mice with transplanted neuroblastoma (NB). Animals receiving 0.1 mg/kg NTX every 6 hr, which blocked morphine-induced analgesia for 24 hr each day, had a 100% tumor incidence, no deviation in time before tumor appearance, and a 17% decrease from control values in total survival time. In contrast, once daily injections of either 0.1 mg/kg NTX or 0.4 mg/kg NTX (the equivalent of 0.1 mg/kg given 4 times daily), which blocked morphine-induced analgesia for less than 10 hr each day, resulted in a tumor incidence of 20% and 60%, respectively, delays in time prior to tumor appearance of 90% and 65%, respectively, and an increased total survival time of 10% and 24%, respectively, for tumor-bearing mice relative to control levels. Inoculation of NB in control animals resulted in 100% tumor appearance within 16 days and a mean survival time of 36 days. These results show that tumorigenic events are dictated by the duration of opiate receptor blockade rather than the dosage of opiate antagonist, and provide compelling evidence that endogenous opioid systems play a crucial role in neuro-oncogenic expression.  相似文献   

2.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

3.
Diazepam-induced feeding in rats is antagonized not only by the opiate antagonist naloxone but also intraventricular administration of specific antisera to the endogenous opioid peptides met-enkephalin or beta-endorphin. Pituitary beta-endorphin is probably not implicated in the diazepam effect since blockade with the glucocorticoid dexamethasone of the release of beta-endorphin from the anterior pituitary does not modify the diazepam-induced feeding, which is however prevented by TRH, a suggested physiological antagonist of some of the effects of opioid peptides. The possible central participation of both beta-endorphin and met-enkephalin in the ingestive behavior induced by diazepam gives further support to the postulated physiological role of endogenous opioids in appetite regulation.  相似文献   

4.
Though administration of opioid peptides depresses ventilation and ventilatory responsiveness, the role of endogenous opioid peptides in modulating ventilatory responsiveness is not clear. We studied the interaction of endogenous opioids and ventilatory responses in 12 adult male volunteers by relating hypercapnic responsiveness to plasma levels of immunoactive beta-endorphin and by administering the opiate antagonist naloxone. Ventilatory responsiveness to hypercapnia was not altered by pretreatment with naloxone, and this by itself suggests that endogenous opioids have no role in modulating this response. However, there was an inverse relationship between basal levels of immunoactive beta-endorphin in plasma and ventilatory responsiveness to CO2. Furthermore, plasma beta-endorphin levels rose after short-term hypercapnia but only when subjects had been pretreated with naloxone. We conclude that measurement of plasma endorphin levels suggests relationships between endogenous opioid peptides and ventilatory responses to CO2 that are not apparent in studies limited to assessing the effect of naloxone.  相似文献   

5.
The role of endogenous opioids in immunological mechanisms was examined by subjecting athymic (nu/nu) mice to chronic injections of the opioid agonist [Met5]-enkephalin (MET) or continuous opioid receptor blockade with naltrexone (NTX). After 8 days of treatment, neither excess peptide nor deprivation of opioids from receptors had any effect on body weight, spleen index (spleen to body weight ratio), total and differential white blood cell counts, and natural killer (NK) cell activity in peripheral blood or splenic lymphocytes. At 28 days, chronic treatment with MET or NTX had no effect on any of these parameters with the exception of an elevation from controls in NK cell activity in peripheral blood in mice receiving NTX, and subnormal NK cell activity related to splenic lymphocytes in the MET group. These results suggest that chronic exposure to an opioid agonist, or persistent opioid receptor blockade, have little influence on a variety of immunological properties in athymic mice, suggesting that native opioids such as MET do not play a marked role in defense mechanisms in the athymic mouse.  相似文献   

6.
The modification of binding parameters (equilibrium dissociation constant and binding capacity) of three opioid ligands (DADLE, Etorphine and EKC) on bovine adrenal medulla and rat brain membranes have been examined in three buffer systems: Tris-HCl 50 mM, Hepes-NaOH 10 mM and Tes-KOH 10 mM. Major differences of these parameters have been found: Hepes-NaOH provoked a diminution of the apparent number of binding sites, while a concomitant diminution of the KD and Bmax was observed in Tes-KOH buffer. Substitution of counterions in these two buffers produced further changes of binding characteristics: in Hepes buffer we have observed an abolition of 3H DADLE binding, an enhancement of 3H EKC binding and no modification of 3H etorphine binding characteristics. On the contrary an abolition of the specific binding of all three ligands in Tes buffer was found in the bovine adrenal medulla while minor changes were observed in rat brain. It is concluded that, inspite same disadvantages (substitution for bivalent cations and temperature dependence), Tris-HCl is the buffer of choice for the analysis of opioid binding site interactions.  相似文献   

7.
Sweet DC  Levine AS  Kotz CM 《Peptides》2004,25(2):307-314
We investigated the interaction of the orexigenic neuropeptide, hypocretin-1 (Hcrt-1, also known as orexin-A), with endogenous opioids (also orexigenic neuropeptides). Rats were injected with naltrexone (NTX, nonspecific opioid antagonist) i.p., i.c.v., in the lateral hypothalamus (LH), and in the accumbens shell (AcbSh), and naloxone methiodide (nonspecific opioid antagonist unable to cross the blood brain barrier) was injected i.p. Rats were then injected with Hcrt-1 in the LH. Food intake was measured for up to 4h thereafter. Rats were also pretreated with NTX in the LH, with Hcrt-1 injected in the AcbSh. NTX suppressed Hcrt-1-induced feeding only when injected i.p., i.c.v., and in the AcbSh. These studies reveal the necessity for functional central opioidergic pathways involving the AcbSh, but not the LH in Hcrt-1-induced feeding.  相似文献   

8.
Possible hyperendorphinergic pathophysiology of the Rett syndrome   总被引:1,自引:0,他引:1  
The Rett syndrome is a postnatal developmental and neurological disorder seen only in girls. Many of the symptoms of this disorder, such as microcephaly, stereotypy, respiratory disturbances and seizures, are analogous to the effects of the administration of beta-endorphin or other opioids in animals. Preliminary reports of elevated beta-endorphin-like immunoreactivity in the cerebrospinal fluid of girls with the Rett syndrome, as well as improvement in some of their symptoms during the administration of the opioid antagonist naltrexone, are suggestive of endorphinergic hyperactivity. Thus, the pathophysiology of the Rett syndrome might involve excessive stimulation of opioid receptors in the central nervous system by beta-endorphin or other endogenous opioids.  相似文献   

9.
R I Cone  S Rosenfeld  J Lameh  W Sadée 《Life sciences》1992,51(22):PL219-PL224
The mouse neuroblastoma x rat glioma hybrid NG108-15 was previously shown to express delta opioid receptors. Because neuroblastoma cells display different phenotypes and cloned cell lines are heterogenous, we studied the characteristics and distribution of human 125I-beta-endorphin (125I-beta E) binding sites in cultures of NG108-15 cells with the use of micro-autoradiography and light microscopy. 125I-beta E labeled delta sites in NG108-15 in the presence of the non-opioid blocking peptide, beta-endorphin (6-31) (beta E (6-31)). Silver grains resulting from 125I-beta E binding to the opioid sites occurred in diffuse patches over several cells, with preferential location in dense cell patches. Pretreatment of NG108-15 with the delta agonist DADLE, previously shown to decrease beta E binding to delta sites on intact cells, also reduced silver grain density; however, some cells located in dense cell clusters were resistant to substantial agonist induced loss of labeling. These results suggest that delta opioid binding has a heterogenous cellular distribution in NG108.  相似文献   

10.
Data have now accumulated to strongly demonstrate that several neuropeptides, including endogenous opioids, can have immunomodulatory functions. Most of the studies have so far focused on the direct action of these substances on lymphocytes. We decided to investigate whether thymic epithelial cells (TEC) - the major component of the thymic microenvironment - could also be modulated by endogenous opioids. Primary cultures of human and murine TEC were subjected to several opioids (alpha-beta- or gamma-endorphins, as well as met- or leuenkephalins) applied in concentrations ranging from 10(-6) to 10(-9) M. On the following days we measured the levels of thymulin (a chemically-defined thymic hormone known to stimulate some steps of T-cell differentiation) in the culture supernatants, as well as the numbers of thymulin containing cells, evaluated by immunofluorescence with an anti-thymulin monoclonal antibody. After treatment of TEC cultures with beta-endorphin or leu-enkephalin a significant increase in the levels of thymulin in the culture media was observed, paralleled by a rise in the percentage of thymulin containing cells. In addition, this stimulatory effect was dose-dependent. Preincubation of the opioids with the specific antibodies abrogated the opioid-induced stimulatory effect on TEC. Moreover, naloxone, an opioid receptor antagonist, blocked the effect of beta-endorphin on thymulin production, suggesting that the effect of this neuropeptide on epithelial cells was mediated by an opioid receptor. Importantly, no effect on thymulin production was observed with the other opioids used, whatever the dose. These results suggest that, at least in vitro, beta-endorphin and leu-enkephalin stimulate the hormonal function of the thymic epithelium. These findings lead to the general concept that the modulatory role of endogenous opioids on the immune system is not restricted to lymphocytes but can also take place at the level of cells belonging to T-cell differentiating microenvironments.  相似文献   

11.
Opioid peptides serve as tonically active negative growth regulators in renewing and regenerating epithelia. To examine the involvement of opioids in renewal of the stratum corneum after tape stripping of tail skin, C57BL/6 J mice were given systemic injections of the potent opioid antagonist, naltrexone (NTX, 20 mg/kg i.p.) following injury. Blockade of opioidreceptor interaction by NTX for 4 h resulted in an elevation of 36–;66% in basal cell DNA synthesis measured 24 h after injury. Injection of the endogenous opioid peptide, [Met5]-enkephalin (OGF, 10 mg/kg i.p.) 4 h before termination, suppressed radiolabelled thymidine incorporation in the basal cell layer by 37–46%at 24 h after wounding. The magnitude of the effects on DNA synthesis of OGF, but not NTX, depended on the timing of administration with respect to injury. OGF maximally depressed basal cell labelling (72%) when given 16 h after tape stripping. Concomitant administration of naloxone (10 mg/kg) with OGF blocked the inhibition of DNA synthesis; naloxone alone at the dosage utilized had no effect on cell labelling. Both OGF and its receptor, OGFr, were detected by immunocytochemistry in the basal and suprabasal cell layers, but not the cornified layer of tape stripped and uninjured tail skin. These results indicate: (a) a native opioid peptide and its receptor are expressed in epidermal cells of injured and uninjured mouse tail skin; (b) removal of the stratum corneum by tape stripping does not disrupt the function of the endogenous opioid growth system; (c) the proliferative response to wounding of the tail is tonically inhibited by the receptor-mediated action of an endogenous opioid peptide; and (d) DNA synthesis by basal cells can be elevated by disrupting opioid peptidereceptor interactions.  相似文献   

12.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

13.
Previous work from our own and other laboratories has shown that electroshock-induced neurohormonal changes in rodents could modify host-tumor interactions by both increasing the frequency and growth rate of transplanted tumors and decreasing the elimination rate of a radiolabelled natural killer (NK) cell sensitive tumor. To test whether such neurohormonal changes could affect NK activity we subjected mice to tail electrode shock (TES) and examined in vitro splenic NK activity. We found that between 30 and 60 min after TES there is a significant but transient suppression of their splenic NK activity. To determine whether TES-induced endogenous opioids might be involved in this suppression mice were given intraperitoneal injections of the opioid antagonists naloxone or naltrexone before or at the end of the TES session. These drugs prevented NK suppression. In a further test of the hypothesis that opioids alter NK activity mice were given a single intraperitoneal injection of morphine or [D-Ala2-Met5]-beta-endorphin, a relatively stable analogue of beta-endorphin, an endogenous opioid. Contrary to expectations these opioids enhanced splenic NK activity. Our interpretation of these results is that shock-induced NK suppression may not be mediated by endogenous opioids and that the effects of naloxone and naltrexone on NK activity may not be related to their opioid antagonist properties. On the contrary, opioids may participate in a homeostatic rebound from suppression mediated by other neurohormonal mechanisms activated during TES.  相似文献   

14.
Investigations were performed with 19 healthy male volunteers to specify a possible role of endogenous opioid peptides in the pathogenesis of motion sickness. For this purpose the test subjects were administered naloxone, a specific antagonist of opiates and opioids, before rotation and during rotation in a BU-4 armchair at a rate of 30 rpm. In addition, the content of beta-endorphin in blood plasma was measured. It was discovered that naloxone exerts both prophylactic and therapeutic effects as regards the simulated motion sickness. In this respect it was more efficacious than the reference drug scopolamine. After rotation there was a significant increase in the beta-endorphin content in the blood plasma of the test subjects. It is assumed that endogenous opioid peptides (in particular beta-endorphin) may be directly involved in the genesis of vestibulo-vegetative disorders in motion sickness.  相似文献   

15.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

16.
We hypothesized that, in the airway mucosa, opioids are inhibitory neural modulators that cause an increase in net water absorption in the airway mucosa (as in the gut). Changes in bidirectional water fluxes across ovine tracheal mucosa in response to basolateral application of the opioid peptides beta-endorphin, dynorphin A-(1-8), and [d-Ala(2), d-Leu(5)]-enkephalin (DADLE) were measured. beta-Endorphin and dynorphin A-(1-8) decreased luminal-to-basolateral water fluxes, and dynorphin A-(1-8) and DADLE increased basolateral-to-luminal water flux. These responses were electroneutral. In seven beagle dogs, administration of aerosolized beta-endorphin (1 mg) to the tracheobronchial airways decreased the clearance of radiotagged particles from the bronchi in 1 h from 34.7 to 22.0% (P < 0.001). Naloxone abrogated the beta-endorphin-induced changes in vitro and in vivo. Contrary to our hypothesis, the opioid-induced changes in water fluxes would all lead to a predictable increase in airway surface fluid. The beta-endorphin-induced increases in airway fluid together with reduced bronchial mucociliary clearance may produce procongestive responses when opioids are administered as antitussives.  相似文献   

17.
A monoclonal antibody (mAb), KA8 that interacts with the kappa-opioid receptor binding site was generated. BALB/c female mice were immunized with a partially purified kappa-opioid receptor preparation from frog brain. Spleen cells were hybridized with SP2/0AG8 myeloma cells. The antibody-producing hybridomas were screened for competition with opioid ligands in a modified enzyme-linked immunosorbent assay. The cell line KA8 secretes an IgG1 (kappa-light chain) immunoglobulin. The mAb KA8 purified by affinity chromatography on protein A-Sepharose CL4B was able to precipitate the antigen from a solubilized and affinity-purified frog brain kappa-opioid receptor preparation. In competition studies, the mAb KA8 decreased specific [3H]ethylketocyclazocine ([3H]EKC) binding to the frog brain membrane fraction in a concentration-dependent manner to a maximum to 72%. The degree of the inhibition was increased to 86% when mu- and delta-opioid binding was suppressed by 100 nM [D-Ala2,NMe-Phe4,Gly-ol]-enkephalin (DAGO) and 100 nM [D-Ala2,L-Leu5]-enkephalin (DADLE), respectively, and to 100% when mu-, delta-, and kappa 2-sites were blocked by 5 microM DADLE. However, the mu-specific [3H]DAGO and the delta-preferring [3H]DADLE binding to frog brain membranes cannot be inhibited by mAb KA8. These data suggest that this mAb is recognizing the kappa- but not the mu- and delta-subtype of opioid receptors. The mAb KA8 also inhibits specific [3H]naloxone and [3H]EKC binding to chick brain cultured neurons and rat brain membranes, whereas it has only a slight effect on [3H]EKC binding to guinea pig cerebellar membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
G R Slizgi  J H Ludens 《Life sciences》1985,36(23):2189-2193
Multiple opioid binding sites have been documented in brain tissue. In this study we report on the presence of binding sites for the opioid ethylketocyclazocine (EKC) in a membrane fraction of rat kidney. Binding appeared to be selective in that opioids varied markedly in their capacities to displace 3H-EKC. Correlating with the capacity of an opioid to displace 3H-EKC was the ability to produce diuresis. Although our studies cannot assign a particular physiological or pharmacological role for the renal EKC binding sites, binding studies of this nature may, nonetheless, be a means by which diuretic activity of opioids can be predicted.  相似文献   

19.
The most common single nucleotide polymorphism in the coding region of the human mu opioid receptor gene is the A118G variant, an adenine to guanine transition at nucleotide position 118 of the coding sequence of the gene. This polymorphism codes for an asparagine to aspartic acid substitution at amino acid 40 in the amino-terminus, thereby removing a potential extracellular glycosylation site. Using in vitro cellular expression assays, this variant has been reported to change binding of the endogenous agonist beta-endorphin and signaling of the receptor following binding of beta-endorphin. Three clinical studies report that A118G genotype affects opioid antagonist-mediated increases in cortisol levels. These studies demonstrate a functional role of this variant in responses to endogenous and exogenous opioids. To further characterize function, we expressed the prototype and variant receptors in two types of cells (human 293 embryonic kidney cells and Syrian hamster adenovirus-12-induced tumor cells). Stable expression of variant and prototype receptors was characterized by differences in levels of cell surface binding capacity (B(max)), forskolin-induced cAMP accumulation, as well as agonist-induced accumulation of cAMP (EC(50)) for several agonists, but not for beta-endorphin. In contrast, transiently expressed variant receptors showed only a minor difference in cell surface binding capacity compared to the prototype, and no differences in cAMP EC(50) values.  相似文献   

20.
Opioid regulation of food intake and body weight in humans   总被引:1,自引:0,他引:1  
Relatively few studies of humans have evaluated the effects of opioids on food intake and body weight. Most have focused on the potential role of opioids in the etiology of obesity. Measurements of endogenous opioids in plasma or spinal fluid of humans reveal higher levels, particularly of beta-endorphin, in obese subjects. Opioid agonists such as methadone and butorphanol tartrate stimulate food intake, and all studies with naloxone, an opioid antagonist, demonstrate a reduction of short-term food intake in obese or lean humans. Long-term studies with naltrexone, an antagonist similar to naloxone, show no effect on food intake or body weight. Opioid agonists or antagonists have little effect on nutrient selection in humans. The effects on feeding-related hormones is equivocal. Further studies with more specific opioid receptor activities are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号