首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.  相似文献   

2.
We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.  相似文献   

3.
C Spetea  B Lundin 《FEBS letters》2012,586(18):2946-2954
The thylakoid lumen is an aqueous chloroplast compartment enclosed by the thylakoid membrane network. Bioinformatic and proteomic studies indicated the existence of 80-90 thylakoid lumenal proteins in Arabidopsis thaliana, having photosynthetic, non-photosynthetic or unclassified functions. None of the identified lumenal proteins had canonical nucleotide-binding motifs. It was therefore suggested that, in contrast to the chloroplast stroma harboring nucleotide-dependent enzymes and other proteins, the thylakoid lumen is a nucleotide-free compartment. Based on recent findings, we provide here an updated view about the presence of nucleotides in the thylakoid lumen of plant chloroplasts, and their role in function and dynamics of photosynthetic complexes.  相似文献   

4.
5.
Jarvis P  Robinson C 《Current biology : CB》2004,14(24):R1064-R1077
The vast majority of the approximately 3000 different proteins required to build a fully functional chloroplast are encoded by the nuclear genome and translated on cytosolic ribosomes. As chloroplasts are each surrounded by a double-membrane system, or envelope, sophisticated mechanisms are necessary to mediate the import of these nucleus-encoded proteins into chloroplasts. Once inside the organelle, many chloroplast proteins engage one of four additional protein sorting mechanisms that direct targeting to the internal thylakoid membrane system.  相似文献   

6.
7.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane in eukaryotes, the plasma membrane in bacteria and the thylakoid membrane in chloroplasts. In higher plants two different SRP-dependent mechanisms have been identified: one post-translational for proteins imported to the chloroplast and one co-translational for proteins encoded by the plastid genome. The post-translational chloroplast SRP (cpSRP) consists of the protein subunits cpSRP54 and cpSRP43. An RNA component has not been identified and does not seem to be required for the post-translational cpSRP. The co-translational mechanism is known to involve cpSRP54, but an RNA component has not yet been identified. Several chloroplast genomes have been sequenced recently, making a phylogenetically broad computational search for cpSRP RNA possible. We have analysed chloroplast genomes from 27 organisms. In higher plant chloroplasts, no SRP RNA genes were identified. However, eight plastids from red algae and Chlorophyta were found to contain an SRP RNA gene. These results suggest that SRP RNA forms a complex in these plastids with cpSRP54, reminiscent of the eubacterial SRP.  相似文献   

8.
9.

Background  

The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana.  相似文献   

10.
11.
Thermotolerance of photosynthetic light reactions in vivo is correlated with a decrease in the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol and an increased incorporation into thylakoid membranes of saturated digalactosyl diacylglycerol species. Although electron transport remains virtually intact in thermotolerant chloroplasts, thylakoid protein phosphorylation is strongly inhibited. The opposite is shown for thermosensitive chloroplasts in vivo. Heat stress causes reversible and irreversible inactivation of chloroplast protein synthesis in heat-adapted and nonadapted plants, respectively, but doe not greatly affect formation of rapidly turned-over 32 kilodalton proteins of photosystem II. The formation on cytoplasmic ribosomes and import by chloroplasts of thylakoid and stroma proteins remain preserved, although decreased in rate, at supraoptimal temperatures. Thermotolerant chloroplasts accumulate heat shock proteins in the stroma among which 22 kilodalton polypeptides predominate. We suggest that interactions of heat shock proteins with the outer chloroplast envelope membrane might enhance formation of digalactosyl diacylglycerol species. Furthermore, a heat-induced recompartmentalization of the chloroplast matrix that ensures effective transport of ATP from thylakoid membranes towards those sites inside the chloroplast and the cytoplasm where photosynthetically indispensable components and heat shock proteins are being formed is proposed as a metabolic strategy of plant cells to survive and recover from heat stress.  相似文献   

12.
13.
在高等植物叶绿体中,RNA结合蛋白在转录后RNA处理、运输以及mRNA的稳定等方面发挥重要作用.本项研究使用多聚腺苷酸(polyA)吸附柱或单链DNA(ssDNA)吸附柱富集白桦叶绿体的polyA结合蛋白或RNA结合蛋白,并通过MALDI-TOF-MS以及ESI MS/MS进行鉴定,13个叶绿体蛋白质得到了鉴定.按照Swiss Prot数据库的注释,这些蛋白质的功能主要包括4个相关种类,分别为NAD结合蛋白、RNA结合蛋白、DNA结合蛋白和ATP结合蛋白.使用这些方法还鉴定出包括转录因子的4个高丰度蛋白.这些结果加深了对树木中叶绿体RNA结合蛋白的全面了解,可以将其应用于其他树木叶绿体中RNA 蛋白质的相互作用的研究.  相似文献   

14.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

15.
The complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha has made clear the entire gene organization of the chloroplast genome. Quite a few genes encoding components of photosynthesis and protein synthesis machinery have been identified by comparative computer analysis. Other genes involved in photosynthesis, respiratory electron transport, and membrane-associated transport in chloroplasts were predicted by the amino acid sequence homology and secondary structure of gene products. Thirty-three open reading frames in the liverwort chloroplast genome remain unidentified. However, most of these open reading frames are also conserved in the chloroplast genomes of two species, a liverwort, Marchantia polymorpha, and tobacco, Nicotiana tabacum, indicating their active functions in chloroplasts.Abbreviations bp base pair - kDa kilodalton - IR inverted repeat - ORF open reading frame - DALA -aminolevulinate  相似文献   

16.
Bae W  Lee YJ  Kim DH  Lee J  Kim S  Sohn EJ  Hwang I 《Nature cell biology》2008,10(2):220-227
In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.  相似文献   

17.
18.
叶绿体蛋白质组研究进展   总被引:3,自引:1,他引:2  
亚细胞蛋白质组学是近年来蛋白组学研究中的一个热点。通过细胞器的纯化和亚细胞组分的分离,降低了样品的复杂性,增大了相应蛋白质组分的富集,有利于由此分离获得的蛋白质的序列分析及功能鉴定。叶绿体蛋白质组为植物亚细胞蛋白质组学研究中相对全面的一部分,利用亚细胞分离结合双向电泳技术系统地鉴定叶绿体中蛋白质组分是获取叶绿体蛋白质信息、确定其功能的重要技术手段。本文就近年来植物叶绿体蛋白质组涵盖的叶绿体内、外被膜、叶绿体基质、类囊体膜和类囊体腔蛋白的研究进行综述,以全面认识叶绿体蛋白的组成、特点及其在叶绿体生理生化代谢网络中的作用。  相似文献   

19.
Proteome map of the chloroplast lumen of Arabidopsis thaliana.   总被引:13,自引:0,他引:13  
The thylakoid membrane of the chloroplast is the center of oxygenic photosynthesis. To better understand the function of the luminal compartment within the thylakoid network, we have carried out a systematic characterization of the luminal thylakoid proteins from the model organism Arabidopsis thaliana. Our data show that the thylakoid lumen has its own specific proteome, of which 36 proteins were identified. Besides a large group of peptidyl-prolyl cis-trans isomerases and proteases, a family of novel PsbP domain proteins was found. An analysis of the luminal signal peptides showed that 19 of 36 luminal precursors were marked by a twin-arginine motif for import via the Tat pathway. To compare the model organism Arabidopsis with another typical higher plant, we investigated the proteome from the thylakoid lumen of spinach and found that the luminal proteins from both plants corresponded well. As a complement to our experimental investigation, we made a theoretical prediction of the luminal proteins from the whole Arabidopsis genome and estimated that the thylakoid lumen of the chloroplast contains approximately 80 proteins.  相似文献   

20.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号