首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

2.
In a previous study, we characterized a high chlorophyll fluorescence Ipal mutant of Arabidopsis thallana, in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSll protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipal plants. Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.  相似文献   

3.
Site-directed mutations were introduced into PsbO protein of photosystem 2 to study the role of two lysine residues, 223 and 226 (LGAKPPK), in the green alga Chlamydomonas reinhardtii. Lysines 223 and 226 homologous to His228 and His231 from cyanobacteria are located on the protein side facing the lumen and can participate in formation of a channel connecting the Mn cluster with the intrathylakoid space. The K223E and K226E mutants were generated on the basis of the ΔpsbO strain of C. reinhardtii with the substitution of glutamic acid for the lysine residues. The K226E mutation leads to a decrease in stability of the protein and development of the ΔpsbO phenotype (the absence of both photosynthetic activity of photosystem 2 and photoautotrophic growth), with substantially decreased PsbO content in the cells. In the case of K223E, the mutant strain accumulated the normal level of PsbO protein and was able to grow photoautotrophically and to evolve oxygen. However, the rate of oxygen evolution and the F v/F m ratio were reduced by 15–20% compared to the control. Also, the time of the dark decay of F v in the presence of DCMU in the cells of the K223E mutant was increased, indicating impairment in the water-oxidizing complex. In general, our study shows the importance of amino acids K223 and K226 located at the lumenal surface of PsbO protein for the activity of the water-oxidizing complex.  相似文献   

4.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

5.
Doris Godde  Heidrun Dannehl 《Planta》1994,195(2):291-300
To test wether chlorosis is induced by photoinhibitory damage to photosystem II (PSII), onset of chlorosis and loss of PSII function were compared in young spinach (Spinaciae oleracea L.) plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll already occurred after the first week of deficiency and preceded any permanent functional inhibition of the photosynthetic apparatus. Permanent disturbancies of photosynthetic electron transport measured in isolated thylakoids and of PSII function, determined via the ratio of variable fluorescence to maximal fluorescence, Fv/Fm, could be detected only after the second week of deficiency. After the third week, the plants had lost about 60% of their chlorophyll; even so, fluorescence data indicated that 85% of the existing PSII was still capable of initiating photosynthetic electron transport. However, quenching analysis of steady-state fluorescence showed an early increase in non-photochemical quenching and in down-regulated PSII centres with low steady-state quantum efficiency. Together with the down-regulation of PSII centres, a 1.4-fold increase in D1-protein synthesis, measured as incorporation of [14C]leucine, could be observed at the end of the first week before any loss of D1 protein, chlorophyll or photosynthetic activity could be detected. Immunological determiation by Western-blotting did not show a change in D1-protein content; thus, at this time, D1 protein was not only faster synthesised but was also faster degraded than before the imposition of mineral deficiency. The increased turnover was high enough to prevent any loss or functional inhibition of PSII. After 3 weeks, D1-protein synthesis on a chlorophyll basis was further stimulated by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%, showing that the D1-protein was now degraded faster than it was synthesised. Immunological determination and electron-transport measurements showed that together with the loss of D1 protein the other polypetides of PSII were also degraded, resulting in a specific loss of PSII centres. The degradation of PSII centres prevented a large accumulation of damaged PSII centres. We assume that the decrease in PSII centres initiates the breakdown of the other thylakoid proteins.Abbreviations Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed under steady-state conditions - Fv yield of variable fluorescence, (difference between Fo and Fm) - F yield of variable fluorescence under steady-state conditions, difference between Fm and Ft, the fluorescence yield under steady-state conditions - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qp photochemical quenching - qn non-photochemical quenching This work was supported by grants from the Bundesminister für Forschung und Technologie and the German Israeli Foundation. The authors thank Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) for fruitful discussions.  相似文献   

6.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

7.
Conifers of the boreal zone encounter considerable combined stress of low temperature and high light during winter, when photosynthetic consumption of excitation energy is blocked. In the evergreen Pinus sylvestris L. these stresses coincided with major seasonal changes in photosystem II (PSII) organisation and pigment composition. The earliest changes occurred in September, before any freezing stress, with initial losses of chlorophyll, the D1-protein of the PSII reaction centre and of PSII light-harvesting-complex (LHC II) proteins. In October there was a transient increase in F0, resulting from detachment of the light-harvesting antennae as reaction centres lost D1. The D1-protein content eventually decreased to 90%, reaching a minimum by December, but PSII photochemical efficiency [variable fluorescence (Fv)/maximum fluorescence (Fm)] did not reach the winter minimum until mid-February. The carotenoid composition varied seasonally with a twofold increase in lutein and the carotenoids of the xanthophyll cycle during winter, while the epoxidation state of the xanthophylls decreased from 0.9 to 0.1 from October to January. The loss of chlorophyll was complete by October and during winter much of the remaining chlorophyll was reorganised in aggregates of specific polypeptide composition, which apparently efficiently quench excitation energy through non-radiative dissipation. The timing of the autumn and winter changes indicated that xanthophyll de-epoxidation correlates with winter quenching of chlorophyll fluorescence while the drop in photochemical efficiency relates more to loss of D1-protein. In April and May recovery of the photochemistry of PSII, protein synthesis, pigment rearrangements and zeaxanthin epoxidation occurred concomitantly. Indoor recovery of photosynthesis in winter-stressed branches under favourable conditions was completed within 3 d, with rapid increases in F0, the epoxidation state of the xanthophylls and in light-harvesting polypeptides, followed by recovery of D1-protein content and Fv/Fm, all without net increase in chlorophyll. The fall and winter reorganisation allow Pinus sylvestris to maintain a large stock of chlorophyll in a quenched, photoprotected state, allowing rapid recovery of photosynthesis in spring.Abbreviations Elips early light-induced proteins - EPS epoxidation state - F0 instantaneous fluorescence - Fm maximum fluorescence - Fv variable fluorescence - LHC II light-harvesting complex of PSII - LiDS lithium dodecyl sulfate This research was supported by the Swedish Natural Science Research Council. We wish to thank Dr. Adrian Clarke1 (Department of Plant Physiology, University of Umeå, Sweden) for advice on electrophoresis, valuable discussion and providing antibodies. Dr. Stefan Jansson1 and Dr. Torill Hundal (Department for Biochemistry, University of Stockholm, Sweden) provided antibodies. Jan Karlsson1 helped with the HPLC, Dr. Marianna Krol gave advice on green gels and Dr. Vaughan Hurry (Cooperative Research Centre for Plant Sciences, Australian National University, Canberra, Australia) provided valuable discussion.  相似文献   

8.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

9.
Doris Godde  Monika Hefer 《Planta》1994,193(2):290-299
The function of photosystem II (PSII) and the turnover of its D1 reaction-center protein were studied in spinach (Spinacia oleracea L.) plants set under mineral stress. The mineral deficiencies were induced either by supplying the plants with an acidic nutrient solution or by strongly reducing the supply of magnesium alone or together with sulfur. After exposure for 8–10 weeks to the different media, the plants were characterized by a loss of chlorophyll and an increase in starch content, indicating a disturbance in the allocation of assimilates. Depending on the severity of the mineral deficiencies the plants lost their ability to adapt even to moderate iradiances of 400 mol photons·m–2·s–1 and became photoinhibited, as indicated by the decrease in Fv/Fm (the ratio of yield of variable fluorescence to yield of maximal fluorescence when all reaction centers are closed). The loss of PSII function was induced by changes on the acceptor side of PSII. Fast fluorescence decay showed a loss of PSII centers with bound QB, the secondary quinone acceptor of PSII, and a fast reoxidation kinetic of q a - , the primary quinone acceptor of PSII, in the photoinactivated plants. No appreciable change could be observed in the amount of PSII centers with unbound QB and in QB-nonreducing PSII centers. Immunological studies showed that the contents of the D1 and D2 proteins of the PSII reaction center and of the 33-kDa protein of the water-splitting complex were diminished in the photoinhibited plants, and the occurrance of a new polypetide of 14 kDa that reacted with an antibody against the C-termius of the D1 protein. As shown by pulse-labelling experiments with [14C]leucine both degradation and synthesis of the D1 protein were enhanced in the mineral-deficient plants when compared to non-deficient plants. A stimulation of D1-protein turnover was also observed in pH 3-grown plants, which were not inhibited at growth-light conditions. Obviously, stimulation of D1-protein turnover prevented photoinhibition in these plants. However, in the Mg- and Mg/S-deficient plants even a further stimulation of D1-protein turnover could not counteract the increased rate of photoinactivation.Abbreviations amp(f,m,s) amplitude of the fast, (medium and slow) exponential component of fluorescence decay - Fm yield of maximum fluorescenc when all reaction centers are closed - Fo yield of intrinsic fluorescence at open PSII reaction centers in the dark - Fv yield of variable fluorescence, (difference between Fm and Fo) - LHC light-harvesting complex - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII Dedicated to Professor Dr. Dres. hc. Achim Trebst on the occasion of his 65th birthdayThis work was supported by grants from the BMFT and the Ministerium für Umwelt, Raumordnung and Landwirtschaft, Nordrhein-Westfalen. The authors thank H. Wietoska and M. Bronzel for skilful technical assistance.  相似文献   

10.
Dissipation of light energy absorbed by photosystem II (PSII) in assimilating shoots of an evergreen shrub Ephedra monosperma was investigated during its transition from the vegetative to frost-tolerant state under natural conditions of Central Yakutia. The dynamics of modulated chlorophyll fluorescence and carotenoid content was analyzed during seasonal decrease in ambient temperature. The seasonal cooling was accompanied by a stepwise decrease in photochemical activity of PSII (F v/F m = (F m ? F 0)/F m). The decrease in F v/F m occurred from the beginning of September to the end of October, when the temperature was lowered from 10 to ?8°C. During winter period the residual activity of PSII was retained at about 30% of the summer values. The seasonal decrease in temperature was accompanied by a significant stimulation of pH-independent dissipative processes in reaction centers and antenna of PSII. The increase in energy losses was paralleled by a proportional increase in zeaxanthin content on the background of decreasing content of violaxanthin and β-carotene as possible zeaxanthin precursors. At the same time, inhibition of light-induced non-photochemical quenching in the PSII antenna was observed. The results suggest that principal photoprotective mechanisms during seasonal lowering of temperature are: (1) inactivation of PSII and dissipation of excitation energy in PSII reaction centers and (2) zeaxanthin-mediated energy dissipation in the antenna complexes. The first mechanism seems to prevail at early stages of seasonal cooling, whereas both mechanisms are recruited from the onset of sustained freezing temperatures.  相似文献   

11.
Cotyledons excised from dark-grown seedlings of cucumber (Cucumis sativus L.) were cultured in vitro under UV radiation at different wavelengths, obtained by passage of light through cut-off filters with different transmittance properties. Growth and the synthesis of chlorophyll (Chl) in cotyledons were inhibited and malondialdehyde was accumulated upon irradiation at wavelengths below 320 nm. Exogenous application of scavengers of free radicals reversed the growth inhibition induced by UV-B. Measurement of the fluorescence of Chl a suggested that electron transfer in photosystems was affected by UV-B irradiation. On the basis of these results, the involvement is postulated of active species of oxygen in damages to thylakoid membranes and the growth inhibition that are induced by UV-B irradiation.Abbreviations Chl chlorophyll - Fm maximal fluorescence (dark) - Fm maximal fluorescence (light) - Fv variable fluorescence (dark) - Fv variable fluorescence (light) - MDA malondialdehyde - O2 Superoxide radical - PS photosystem - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence - UV-BBE biologically effective UV-B radiation - WL(T = 0.5) wavelength at which 50% transmittance occurs  相似文献   

12.
The effect of chilling temperatures (5°C) on chlorophyll fluorescence transients was used to study chilling-induced inhibition of photosynthesis in plant species with differing chilling sensitivities. A Brancker SF-20 fluorometer was used to measure induced fluorescence transients from both attached and detached leaves of chilling-sensitive cucumber (Cucumis sativus L. cv Ashley) and chilling-resistant pea (Pisum sativum L. cv Alaska). The rate of reappearance of the variable component of fluorescence (Fv), following a period of illumination at 25°C, was dependent on the temperature at which the leaf was allowed to dark adapt in chilling-sensitive cucumber, but not in chilling-resistant pea. In cucumber, dark adaptation at 25°C following illumination resulted in a much faster return of Fv than dark adaptation at 5°C following illumination. However, Fv reappearance during the dark adaptation period in chilling-resistant pea was temperature independent. The difference in the temperature response of Fv following illumination correlated with temperature sensitivity of these two species. The process responsible for the difference in Fv may represent a site of chilling sensitivity in the photosynthetic apparatus.  相似文献   

13.
We compared the parameters of chlorophyll fluorescence between two sugar beet (Beta vulgaris L.) species differing in drought tolerance. Our results indicated that there were different responses to the drought stress of these sugar beet species. In drought-tolerant sugar beet, the F 0 increased slightly, while qN increased substantially, indicating that these plants can protect PSII reaction centers from the damage. F v/F m and qP decreased slightly during the initial period of drought stress; this suggests that there is a slight impact of drought stress on the openness of PSII reaction centers, and thus the plants did not suffer seriously. This was further shown by the decreased Yield and electron transfer rate. The parameters of chlorophyll fluorescence were stable and can be used as an important indicator for sugar beet seedlings in the early drought tolerance.  相似文献   

14.
The aim of the presented work was to study whether the efficiency of photosynthesis may influence resistance of hardened plants to disease. Seedlings of spring barley, meadow fescue and winter oilseed rape were chilled at 5 °C for 2, 4 or 6 weeks and at these deadlines the changes in cell membrane permeability (expressed as electrolyte leakage), chlorophyll fluorescence (initial fluorescence - F0, maximal fluorescence - Fm, quantum yield of PSII - Fv/Fm) and net photosynthesis rate (FN) were measured. Also, the influence of cold on the degree of plant resistance to economically important pathogens -Bipolaris sorokiniana or Phoma lingam was estimated. Two, four or six week-hardened plants were artificially infected: barley and fescue by B. sorokiniana, and oilseed rape by P. lingam. Hardening at 5 °C stimulated resistance of barley, fecue and rape to their specific pathogens. Six-week long acclimation was the most effective for plant resistance. Cold significantly changed cell membrane permeability and decreased chlorophyll fluorescence (F0, Fm and Fv/Fm) of all studied plant species, while net photosynthesis rate was found to decrease only in barley. The results indicate that cold-induced resistance of plants to pathogens was correlated with a decrease in cell membrane permeability. In the case of fescue and barley a significant connection between the quantum yield of PSII and their resistance to B. sorokiniana was shown. Additionally, the resistance of barley to fungus was depended on net photosynthesis rate. In general this research shows that the efficiency of photosynthesis may be used as an indicator of plant resistance to disease.  相似文献   

15.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

16.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

17.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

18.
Photoinhibition in outdoor cultures of Spirulina platensis was studied by measuring the polyphasic rise of chlorophyll fluorescence transients, which provide information on the primary photochemistry of PSII. The maximum efficiency of PSII photochemustry (Fv/Fm) declined in response to daily increasing irradiance and recovered as daily irradiance decreased. The greatest inhibition (15%) in Fv/Fm was observed at 12:00 hr which responded to the highest irradiance. The absorption flux, the trapping flux, and the electron transport flux per PSII reaction center increased in response to daily increasing irradiance and decreased as irradiance decreased. The daily change in the concentration of PSII reaction centers followed the same pattern as Fv/Fm. However, no significant changes in the probability of electron transport beyond QAo) were observed during the day. The results suggest that the decrease in Fv/Fm induced by photoinhibition in outdoor Spirulina cultures was a result of the inactivation of PSII reaction centers. The results also suggest that the measurement of polyphasic fluorescence transients is a powerful tool to study the mechanism of photoinhibition in outdoor Spirulina cultures and to screen strains for photoinhibition tolerance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

20.
It has been shown that the aba mutant of Arabidopsis thaliana (L.) Heynh. is impaired in epoxy-carotenoid biosynthesis and accumulates the epoxy-carotenoid precursor, zeaxanthin (C.D. Rock, J.A.D. Zeevaart [1991] Proc Natl Acad Sci USA 88: 7496-7499). In addition to providing conclusive evidence for the indirect pathway of abscisic acid biosynthesis from epoxy-carotenoids, the aba mutation offers a powerful means to study the function of xanthophylls (oxygenated carotenoids) in photosynthesis. We measured in vivo the chlorophyll (Chl) fluorescence parameters Fo (initial), Fm (maximum), Fv (variable = Fm − Fo), and t½ (half-rise time of fluorescence induction) of wild-type (WT) and three allelic aba mutants. The mutant genotypes had significantly lower Fo and Fm values relative to those of WT. The Fv/Fm ratio and t½, which are parameters affected by photochemical efficiency, photosystem II (PSII), and plastoquinone pool sizes, were similar in the aba alleles and WT. Because the aba genotypes accumulate high levels of zeaxanthin, which is involved in nonphotochemical quenching of Chl fluorescence, we propose that the reduced fluorescence yields in the aba genotypes are a consequence of the accumulated zeaxanthin. Measurement of PSII oxygen evolution rates in isolated thylakoid membranes of WT and aba-4 confirmed that quantum efficiency was not altered in aba-4 but indicated that the mutant had reduced PSII activity in vitro. Electron microscopy revealed an abnormal chloroplast ultrastructure in the aba plants: the mutants had significantly fewer thylakoid lamellae per granum stack but significantly more grana per chloroplast, as well as more chloroplasts per cell than WT. Immunoblot analysis established that aba-4 had normal levels of the Chl a/b-binding core polypeptide of PSII (CP29) and the PSII light-harvesting Chl a/b-binding complex. These results provide evidence for the role of zeaxanthin in nonphotochemical fluorescence quenching and suggest involvement of epoxy-carotenoids and/or zeaxanthin in thylakoid stacking and PSII activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号