首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
目的:明确白细胞介素-6(IL-6)在小鼠急性胰腺炎中的作用及其机制研究。方法:通过胰胆管结扎的方法诱导小鼠急性胰腺炎;分离小鼠胰腺腺泡细胞。采用ELISA方法检测胰腺组织或腺泡细胞裂解物中的细胞因子;通过western blot分析检测组织或细胞中IL-6或ERK表达。结果:IL-6浓度在胰腺组织和腺泡细胞中显著增加(P0.05)。在离体原代小鼠腺泡细胞,TNF-α刺激增加IL-6释放(P0.05);与此同时,IL-6刺激可增加其它促炎性细胞因子的释放,两者都涉及ERK MAP激酶通路。黄酮类化合物木犀草素抑制IL-6刺激引起白细胞介素-6(IL-6)和人巨嗜细胞激活蛋白-1(CCL2/MCP-1)释放。最后进一步证实,IL-6激活人胰腺组织中的ERK。结论:IL-6在急性胰腺炎中增加,激活炎症通路并加重急性胰腺炎。  相似文献   

4.
Systemic LPS endotoxin is associated with acute pancreatic damage. Whether damage results from direct interaction of LPS with pancreatic cells is unknown. We addressed that question by monitoring p8 expression in reponse to LPS, in vivo and in vitro, because overexpression of the p8 protein is a sensitive marker of pancreatic agression. For in vivo studies, rats were sacrificed at different times after a single intraperitoneal injection of LPS, and pancreas, liver, kidney, lung, brain, and intestine were processed for RNA preparation. In vitro, pancreatic acinar AR4-2J cells were cultivated with 0.1, 1, or 10 micrograms/ml LPS for 6, 12, or 24 h. p8 mRNA expression was monitored by Northern blotting. In vivo, it was strongly increased in the pancreas after 12 h of treatment and remained elevated after 24 h. It was also induced in kidney and liver, with a maximum at 6 and 12 h, respectively, but not in lung, brain, or intestine. In AR4-2J cells, basal p8 mRNA expression was very low and increased in a time- and dose-dependent manner after treatment with LPS. LPS-induced overexpression of p8 mRNA in vivo confirmed the adverse effect of endotoxemia on pancreas and its overexpression in vitro demonstrated a direct interaction of LPS with pancreatic cells.  相似文献   

5.
6.
We describe the cloning and expression of the mouse gene interferon-inducible-protein 15 (IP15), whose activation is related to the acute phase of experimental pancreatitis. Analysis of its structure indicates that it encodes a putative transmembrane protein of 137 amino acids. This gene contains a predicted IFN-stimulable-response element. In vivo studies showed that IP15 is strongly activated in pancreas early during caerulein-induced pancreatitis. In situ hybridization of IP15 mRNA showed that its expression is restricted to acinar cells. IP15 was also induced in pancreas under systemic-lipopolysaccharide treatment and in intestine under Salmonella infection. In vitro studies using NIH3T3 fibroblasts showed that IP15 is induced by IFN-alpha. Growth rate was significantly lower in cells transfected with pcDNA4/IP15 plasmid. In addition, cells expressing IP15 showed less capacity to develop colonies after antibiotic selection. In conclusion, we identified a new interferon-inducible gene that is activated early in pancreas with pancreatitis and whose expression inhibits cell growth.  相似文献   

7.
8.
9.
10.
11.
Oxygen free radicals (OFR) are produced in the course of acute pancreatitis (AP). In addition to injurious oxidative effects, they are also involved in the regulation of cell growth. The aim of the present study was to examine the relationship between the effectiveness of N-acetyl-l-cysteine (NAC) to prevent the generation of OFR and the changes in the cell-cycle pattern of acinar cells in the course of AP induced in rats by pancreatic duct obstruction (PDO). NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Flow-cytometric measurement of OFR generation in acinar cells was carried out using dihydrorhodamine as fluorescent dye. Plasma amylase activity, pancreatic glutathione (GSH) content and TNF-alpha plasma levels were also measured. The distribution of acinar cells throughout the different cell-cycle phases was analysed at different AP stages by flow cytometry using propidium iodide staining. NAC administration reduced the depletion of pancreatic GSH content and prevented OFR generation in acinar cells of rats with PDO-induced acute pancreatitis. As a result, AP became less severe as reflected by the significant improvement of hyper-amylasaemia and maintenance of plasma TNF-alpha levels at values not significantly different from controls were found. NAC administration inhibited progression of cell-cycle phases, maintaining acinar cells in quiescent state at early PDO times. The protection from oxidative damage by NAC treatment during early AP, allows the pancreatic cell to enter S-phase actively at later stages, thereby allowing acinar cells to proliferate and preventing the pancreatic atrophy provoked by PDO-induced AP. The results provide evidence that OFR play a critical role in the progression of acinar cell-cycle phases. Prevention of OFR generation of acinar cells in rats with PDO-induced AP through NAC treatment, not only protects pancreas from oxidative damage but also promotes beneficial changes in the cell cycle progression which reduce the risk of pancreatic atrophy.  相似文献   

12.
Cyclooxygenase (COX)-2 is increased in human chronic pancreatitis. We recently demonstrated in a model of chronic pancreatitis (WBN/Kob rat) that inhibition of COX-2 activity reduces and delays pancreatic inflammation and fibrosis. Monocyte chemoattractant protein (MCP)-1 mRNA and PGE(2) were significantly reduced, correlating with a decreased infiltration of macrophages. MCP-1 plays an important role in the recruitment of macrophages to the site of tissue injury. The aim of our study is to identify mechanisms by which macrophages and acinar cells maintain an inflammatory reaction. The expression profile of E prostanoid receptors EP(1-4) and MCP-1 was analyzed by RT-PCR from pancreatic specimens and AR42J cells. MCP-1 secretion was detected by ELISA from rat pancreatic lobuli. We determined EP(1-4) mRNA levels in WBN/Kob rats with chronic pancreatic inflammation. Individual isoforms were highly increased in rat pancreas, concurrent with MCP-1 mRNA expression. In supernatants of pancreatic lobuli and AR42J cells, MCP-1 was detectable by ELISA. In the presence of TNF-alpha, MCP-1 was upregulated. Coincubation with PGE(2) enhanced the TNF-alpha-induced MCP-1 synthesis significantly. Similarly, TNF-alpha mRNA was synergistically upregulated by TNF-alpha and PGE(2). Furthermore, the synergistic effect of TNF-alpha and PGE(2) was abolished by inhibition of PKA but not of PKC. We conclude that EP receptors are upregulated during chronic pancreatic inflammation. PGE(2) modulates the TNF-alpha-induced MCP-1 synthesis and secretion from acinar cells. This synergistic effect is controlled by PKA. This mechanism might explain the COX-2-dependent propagation of pancreatic inflammation.  相似文献   

13.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

14.
15.
BACKGROUND: Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. AIMS: In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. MATERIALS AND METHODS: 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. RESULTS: CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. CONCLUSION: These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.  相似文献   

16.
Activation of neurokinin (NK)-1 receptors but not of NK-3 stimulates amylase release from isolated pancreatic acini of the rat. Immunofluorescence studies show that NK-1 receptors are more strongly expressed than NK-3 receptors on pancreatic acinar cells under basal conditions. No studies have examined the expression of the two NK receptor populations in pancreatic acini during pancreatitis in rats. We therefore investigated the relationships between expression of these two tachykinin receptors and experimental acute pancreatitis induced by stimulating pancreatic amylase with caerulein (CK) in rats. Hyperstimulation of the pancreas by CK caused an increase in plasma amylase and pancreatic water content and resulted in morphological evidence of cytoplasmic vacuolization. Immunofluorescence analysis revealed a similar percentage of NK-1 receptor antibody immunoreactive acinar cells in rats with pancreatitis and in normal rat tissue but a larger percentage of NK-3 receptor immunoreactive cells in acute pancreatitis than in normal pancreas. Western blot analysis of NK-1 and NK-3 receptor protein levels after CK-induced pancreatitis showed no change in NK-1 receptors but a stronger increase in NK-3 receptor expression in pancreatic acini compared with normal rats thus confirming the immunofluorescence data. These new findings support previous evidence that substance P-mediated functions within the pancreas go beyond sensory signal transduction contributing to neurogenic inflammation, and they suggest that substance P plays a role in regulating pancreatic exocrine secretion via acinar NK-1 receptors. The significant increase in NK-3 receptors during pancreatic stimulation suggests that NK-3 receptors also intervene in the pathogenesis of mild acute pancreatitis in rats.  相似文献   

17.
18.
Pancreatic cancer cells are usually resistant to apoptosis mediated by intrinsic or extrinsic factors. BAG-3 (Bis, CAIR), which was identified as a BAG-1-related protein, is a novel modulator of cellular anti-apoptotic activity that functions through its interaction with Bcl-2. In this study we analyzed BAG-3 expression in human pancreatic cancer tissues and cell lines. BAG-3 mRNA was expressed at moderate to high levels in all pancreatic cancer samples, but at low levels in normal pancreas tissues. In situ hybridization and immunohistochemistry analysis revealed that BAG-3 was present in the cancer cells within the pancreatic tumor mass. When BAG-3 mRNA was analyzed in other gastrointestinal cancers (hepatocellular carcinoma; esophageal, stomach and colon cancer), no difference was found from their corresponding normal controls. In pancreatic cancer cells, BAG-3 mRNA expression levels were strongly induced after heat stress, but not in response to members of the tumor necrosis factor (TNF)-alpha family (TNF-alpha, TRAIL, FasL). These findings indicate that in pancreatic cancer, in contrast to other gastrointestinal malignancies, increased levels of BAG-3 might function to block apoptosis. This characteristic of pancreatic cancer might contribute to its more aggressive growth behavior and poor responsiveness to treatment in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号