首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Recent studies have demonstrated oxidative damage is one of the salient features of Alzheimer's disease (AD). In these studies, glycoxidation adduction to and direct oxidation of amino acid side chains have been demonstrated in the lesions and neurons of AD. To address whether lipid damage may also play an important pathogenic role, we raised rabbit antisera specific for the lysine-derived pyrrole adducts formed by lipid peroxidation-derived 4-hydroxynonenal (HNE). These antibodies were used in immunocytochemical evaluation of brain tissue from AD and age-matched control patients. HNE-pyrrole immunoreactivity not only was identified in about half of all neurofibrillary tangles, but was also evident in neurons lacking neurofibrillary tangles in the AD cases. In contrast, few senile plaques were labeled, and then only the dystrophic neurites were weakly stained, whereas the amyloid-β deposits were unlabeled. Age-matched controls showed only background HNE-pyrrole immunoreactivity in hippocampal or cortical neurons. In addition to providing further evidence that oxidative stress-related protein modification is a pervasive factor in AD, the known neurotoxicity of HNE suggests that lipid peroxidation may also play a role in the neuronal death in AD that underlies cognitive deficits.  相似文献   

2.
Several recent studies support a link between tau protein phosphorylation and adduction of tau by reactive carbonyls. Indeed, the phosphorylation-dependent adduction of tau by carbonyl products resulting from lipid peroxidation creates the neurofibrillary tangle-related antigen, Alz50. To determine whether epitopes of carbonyl-modified tau are major conformational changes associated with neurofibrillary tangle formation, we examined seven distinct antibodies raised against neurofibrillary tangles that recognize unique epitopes of tau in Alzheimer disease. Consistently, all seven antibodies recognize tau more strongly (4- to 34-fold) after treatment of normal tau with the reactive carbonyl, 4-hydroxy-2-nonenal (HNE), but only when tau is in the phosphorylated state. These findings not only support the idea that oxidative stress is involved in neurofibrillary tangle formation occurring in brains of Alzheimer disease patients, but also show, for the first time, that HNE modifications of tau promote and contribute to the generation of the major conformational properties defining neurofibrillary tangles.  相似文献   

3.
Oxidative stress has been implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD). Increased lipid peroxidation, decreased levels of polyunsaturated fatty acids, and increased levels of 4-hydroxynonenal (HNE), F(2)-isoprostanes, and F(4)-neuroprostanes are present in the brain in patients with AD. Acrolein, an alpha,beta-unsaturated aldehydic product of lipid peroxidation has been demonstrated to be approximately 100 times more reactive than HNE and is present in neurofibrillary tangles in the brain in AD. We recently demonstrated statistically significant elevated concentrations of extractable acrolein in the hippocampus/parahippocampal gyrus and amygdala in AD compared with age-matched control subjects. Concentrations of acrolein were two to five times those of HNE in the same samples. Treatment of hippocampal cultures with acrolein led to a time- and concentration-dependent decrease in cell survival as well as a concentration-dependent increase in intracellular calcium. In cortical neuron cultures, we now report that acrolein causes a concentration-dependent impairment of glutamate uptake and glucose transport in cortical neuron cultures. Treatment of cortical astrocyte cultures with acrolein led to the same pattern of impairment of glutamate uptake as observed in cortical neuron cultures. Collectively, these data demonstrate neurotoxicity mechanisms of arolein that might be important in the pathogenesis of neuron degeneration in AD.  相似文献   

4.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.  相似文献   

5.
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by intracellular inclusions including neurofibrillary tangles (NFT) and senile plaques. Several lines of evidence implicate oxidative stress with the progression of AD. 4-hydroxy-2-trans-nonenal (HNE), an aldehydic product of membrane lipid peroxidation, is increased in AD brain. The alpha class of glutathione S-transferase (GST) can detoxify HNE and plays an important role in cellular protection against oxidative stress. The export of the glutathione conjugate of HNE is required to fully potentiate the GST-mediated protection. The multidrug resistance protein-1 (MRP1) and GST proteins may act in synergy to confer cellular protection. In the present study, we studied oxidative modification of GST and MRP1 in AD brain by immunoprecipitation of GST and MRP1 proteins followed by Western blot analysis using anti-HNE antibody. The results suggested that HNE is covalently bound to GST and MRP1 proteins in excess in AD brain. Collectively, the data suggest that HNE may be an important mediator of oxidative stress-induced impairment of this detoxifying system and may thereby play a role in promoting neuronal cell death. The results from this study also imply that augmenting endogenous oxidative defense capacity through dietary or pharmacological intake of antioxidants may slow down the progression of neurodegenerative processes in AD.  相似文献   

6.
Alzheimer disease (AD) is a neurodegenerative disease which is characterized by the presence of extracellular senile plaques mainly composed of amyloid-beta peptide (Abeta), intracellular neurofibrillary tangles, and selective synaptic and neuronal loss. AD brains revealed elevated levels of oxidative stress markers which have been implicated in Abeta-induced toxicity. In the present work we addressed the hypothesis that oxidative stress occurs early in the development of AD and evaluated the extension of the oxidative stress and the levels of antioxidants in an in vivo model of AD, the triple-transgenic mouse, which develops plaques, tangles, and cognitive impairments and thus mimics AD progression in humans. We have shown that in this model, levels of antioxidants, namely, reduced glutathione and vitamin E, are decreased and the extent of lipid peroxidation is increased. We have also observed increased activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase. These alterations are evident during the Abeta oligomerization period, before the appearance of Abeta plaques and neurofibrillary tangles, supporting the view that oxidative stress occurs early in the development of the disease.  相似文献   

7.
Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake is inhibited in Alzheimer's disease (AD); however, the mechanism of decreased transporter activity is unknown. Oxidative damage in brain is implicated in models of neurodegeneration, as well as in AD. Glutamate transporters are inhibited by oxidative damage from reactive oxygen species and lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE). Therefore, we have investigated a possible connection between the oxidative damage and the decreased glutamate uptake known to occur in AD brain. Western blots of immunoprecipitated HNE-immunoreactive proteins from the inferior parietal lobule of AD and control brains suggest that HNE is conjugated to GLT-1 to a greater extent in the AD brain. A similar analysis of beta amyloid (Abeta)-treated synaptosomes shows for the first time that Abeta1-42 also increases HNE conjugation to the glutamate transporter. Together, our data provide a possible link between the oxidative damage and neurodegeneration in AD, and supports the role of excitotoxicity in the pathogenesis of this disorder. Furthermore, our data suggests that Abeta may be a possible causative agent in this cascade.  相似文献   

8.
Metals, oxidative stress and neurodegenerative disorders   总被引:1,自引:0,他引:1  
The neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39–42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.  相似文献   

9.
In this study, we compared the neuronal induction of the antioxidant heme oxygenase-1 (HO-1) in Alzheimer's disease with abnormalities in tau marked by antibodies recognizing either phosphorylation (AT8) or conformational change (Alz50). The epitope recognized by Alz50 shows a complete overlap with HO-1-containing neurons, but AT8 recognized these neurons as well as neurons not displaying HO-1. These findings suggest that tau phosphorylation precedes the HO-1 response and that HO-1 is coincident with the Alz50 epitope. This led us to consider whether oxidative damage plays a role in forming the Alz50 epitope. We found that 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation, reacts with normal tau and induces the Alz50 epitope in tau. It is important that the ability of HNE to create the Alz50 epitope not only is dependent on lysine residues of tau but also requires tau phosphorylation because neither methylated, recombinant, nor dephosphorylated tau reacts with HNE to create the Alz50 epitope. Supporting the in vivo relevance of this observation, endogenous paired helical filament-tau isolated from subjects with Alzheimer's disease was immunoreactive with an antibody to a stable HNE-lysine adduct, as were all vulnerable neurons in subjects with Alzheimer's disease but not in control individuals. Together, these findings support the involvement of oxidative damage early in neurofibrillary tangle formation in Alzheimer's disease and also suggest that HNE modification contributes to the generation of the tau conformation defining the Alz50 epitope. These findings provide evidence that an interplay between phosphorylation of tau and neuronal oxidative stress-induced pathology is important in the formation of neurofibrillary tangles.  相似文献   

10.
《Free radical research》2013,47(6-7):507-510
Abstract

Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently binds amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated to be intimately associated with pathological lesions of Alzheimer's disease (AD), suggesting that oxidative stress is a major component in the disease. Here, we examined the HNE-cross-linking modifications by using an antibody specific for a lysine–lysine cross-link. Since in a prior study we noted no immunolabeling of neuritic plaques or neurofibrillary tangles but instead found strong labeling of axons, we focused this study on axons. Axonal labeling was examined in mouse sciatic nerve, and immunoblotting showed the cross-link was restricted to neurofilament heavy and medium subunits, which while altering migration, did not indicate larger NF aggregates, indicative of intermolecular cross-links. Examination of mice at various ages showed the extent of modification remaining relatively constant through the life span. These findings demonstrate lipid-cross-linking peroxidation primarily involves lysine-rich neurofilaments and is restricted to intramolecular cross-links.  相似文献   

11.
Abstract: Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid β-peptide (Aβ). Aβ-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2- trans -nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to the known neurotoxicity of Aβ and HNE. Electron paramagnetic resonance spectroscopy, using a protein-specific spin label, MAL-6(2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl), was used to probe conformational changes in gerbil cortical synaptosomal membrane proteins, and a lipid-specific stearic acid label, 5-nitroxide stearate, was used to probe for HNE-induced alterations in the fluidity of the bilayer domain of these membranes. Synaptosomal membranes, incubated with low concentrations of HNE, exhibited changes in protein conformation and bilayer order and motion (fluidity). The changes in protein conformation were found to be concentration- and time-dependent. Significant protein conformational changes were observed at physiologically relevant concentrations of 1–10 µ M HNE, reminiscent of similar changes in synaptosomal membrane proteins from senile plaque- and Aβ-rich AD hippocampal and inferior parietal brain regions. HNE-induced modifications in the physical state of gerbil synaptosomal membrane proteins were prevented completely by using excess glutathione ethyl ester, known to protect neurons from HNE-caused neurotoxicity. Membrane fluidity was found to increase at higher concentrations of HNE (50 µ M ). The results obtained are discussed with relevance to the hypothesis of Aβ-induced free radical-mediated lipid peroxidation, leading to subsequent HNE-induced alterations in the structure and function of key membrane proteins with consequent neurotoxicity in AD brain.  相似文献   

12.
13.
Oxidative stress may be a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD) Huntington's, and Parkinson's diseases as well as amyotrophic lateral sclerosis. Acrolein is a highly reactive product of lipid peroxidation that is elevated in the brains of persons with AD. This alkenal potentially can react with proteins by Michael addition to alter their structure and function. In the present study, we used electron paramagnetic resonance in conjunction with a protein-specific spin label to monitor synaptosomal membrane protein conformational alterations induced by acrolein. A dose-dependent increased conformational alteration was observed. Consistent with this finding, protein carbonyl levels from protein-bound acrolein were significantly elevated. However, pretreatment of synaptosomes with glutathione ethyl ester (GEE) significantly ameliorated both the conformational alterations and protein carbonyls induced by acrolein. Based on this success, we tested the hypothesis that elevated levels of endogenous glutathione (GSH) would offer protection against acrolein-induced oxidative stress. In-vivo elevation of GSH (215% over control, P<0.04) was produced by i.p. injection of N-acetylcysteine (NAC), a known precursor of GSH. Synaptosomes were treated with vehicle or 2 nM acrolein, the level of this alkenal found in AD brain. In contrast to synaptosomes from control animals, which had significantly increased protein carbonyl levels following addition of 2 nM acrolein, synaptosomes that were isolated from NAC-treated rodents and treated with 2 nM acrolein showed no increased carbonyl levels compared to untreated controls. These results demonstrate protection by increased in-vivo GSH levels against acrolein-induced oxidative stress at levels found in AD brain and are consistent with the notion that methods to increase endogenous GSH levels in neurodegenerative diseases associated with oxidative stress may be promising.  相似文献   

14.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

15.
Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to posttranslational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay, or treat AD.  相似文献   

16.
Abstract: Recent data from several groups suggest that the primary mechanism of β-amyloid neurotoxicity may be mediated by reactive oxygen species. To evaluate this hypothesis, we first compared the efficacy of antioxidant agents in preventing toxicity caused by oxidative insults (iron, hydrogen peroxide, and tert -butyl hydroperoxide) and β-amyloid peptides in cultured rat hippocampal neurons. Tested antioxidants (propyl gallate, Trolox, probucol, and promethazine) generally provided significant protection against oxidative insults but not β-amyloid peptides. Next, we examined whether β-amyloid causes oxidative stress, by comparing levels of lipid peroxidation after exposure to either iron or β-amyloid. In a cell-free system, iron but not β-amyloid generated lipid peroxidation. In culture, both insults caused rapid increases in lipid peroxidation, with iron inducing higher levels at later time points. Pretreatment with the antioxidant probucol significantly reduced lipid peroxidation caused by both insults but only attenuated iron toxicity, suggesting that lipid peroxidation does not contribute directly to cell death induced by β-amyloid. Finally, we observed that increasing basal levels of oxidative stress by pretreating cultures with subtoxic doses of iron significantly increased neuronal vulnerability to β-amyloid. The ability of β-amyloid to induce oxidative stress and the demonstration that oxidative stress potentiates β-amyloid toxicity support the clinical use of antioxidants for AD. However, these data do not support the theory that the primary mechanism of β-amyloid toxicity involves oxidative pathways, indicating a continued need to identify additional cellular responses to β-amyloid that underlie its neurodegenerative actions.  相似文献   

17.
Alzheimer disease (AD) is an age-related neurodegenerative disorder, characterized histopathologically by the presence of senile plaques (SP), neurofibrillary tangles and synapse loss in selected brain regions. Positron emission tomography (PET) studies of glucose metabolism revealed decreased energetics in brain of subjects with AD and arguably its earliest form, mild cognitive impairment (MCI), and this decrease correlated with brain structural studies using MRI. The main component of senile plaques is amyloid beta-peptide (Aβ), a 40–42 amino acid peptide that as oligomers is capable of inducing oxidative stress under both in vitro and in vivo conditions and is neurotoxic. In the mitochondria isolated from AD brain, Aβ oligomers that correlated with the reported increased oxidative stress markers in AD have been reported. The markers of oxidative stress have been localized in the brain regions of AD and MCI that show pathological hallmarks of this disease, suggesting the possible role of Aβ in the initiation of the free-radical mediated process and consequently to the build up oxidative stress and AD pathogenesis. Using redox proteomics our laboratory found a number of oxidatively modified brain proteins that are directly in or are associated with the mitochondrial proteome, consistent with a possible involvement of the mitochondrial targeted oxidatively modified proteins in AD progression or pathogenesis. The precise mechanistic link between mitochondrial oxidative damage and role of oligomeric Aβ has not been explicated. In this review, we discuss the role of the oxidation of mitochondria-relevant brain proteins to the pathogenesis and progression of AD.  相似文献   

18.
Oxidative stress is believed to be an important factor in the development of age-related neurodegenerative diseases such as Alzheimer's disease (AD). The CNS is enriched in polyunsaturated fatty acids and is therefore particularly vulnerable to lipid peroxidation. Indeed, accumulation of lipid peroxidation products has been demonstrated in affected regions in brains of AD patients. Another feature of AD is a change in neuronal microtubule organization. A possible causal relationship between lipid peroxidation products and changes in neuronal cell motility and cytoskeleton has not been investigated. We show here that 4-hydroxy-2(E)-nonenal (HNE), a major product of lipid peroxidation, inhibits neurite outgrowth and disrupts microtubules in Neuro 2A cells. The effect of HNE on microtubules was rapid, being observed after incubation times as short as 15 min. HNE can react with target proteins by forming either Michael adducts or pyrrole adducts. 4-Oxononanal, an HNE analogue that can form only pyrrole adducts but not Michael adducts, had no effect on the microtubules. This suggests that the HNE-induced disruption of microtubules occurs via Michael addition. We also show that cellular tubulin is one of the major proteins modified by HNE and that the HNE adduction to tubulin occurs via Michael addition. Inhibition of neurite outgrowth, disruption of microtubules, and tubulin modification were observed at pathologically relevant HNE concentrations and were not accompanied by cytotoxicity. Our results show that these are proximal effects of HNE that may contribute to cytoskeletal alterations that occur in AD.  相似文献   

19.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

20.
Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号