首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pest potential of stored product mites depends on the reproduction rate that is affected by the environmental conditions. In this study we investigated the effect of temperature, ranging from 5 to 35°C, on the population growth of three important mite species, Acarus siro, Tyrophagus putrescentiae and Auleroglyphus ovatus at 85% r.h. Starting with 10 individuals the population increase of mites was observed after 3 weeks of cultivation, or after 6 weeks for those kept at low temperatures (5, 10, 12.5, and 15°C). The rate of increase was calculated for each temperature and species. The obtained data were fitted with polynomial models. The mite population growth rates increased with increasing moderate temperatures until 25°C, when r m -values were 0.179, 0.177 and 0.190 for A. siro, A. ovatus and T. putrescentiae, respectively. The lower development threshold was 10.2°C in all three species. Estimated upper temperature threshold was higher in T. putrescentiae (49°C) than in A. siro and A. ovatus (38°C). Simulation of the rate of population increase under ideal conditions, using real temperature records obtained from Czech grain stores, showed that the pest mite populations increase only during 3.5 months within a typical 9-month storage season in Central Europe. These results indicate that control of mites, be it chemical, physical or biological, is recommended during the months when allergens and pests are produced, i.e. from September to mid November and in May.  相似文献   

2.
Residual populations of storage mites sheltering in crevices and cracks escape conventional control treatments and are implicated in the infestation of newly harvested grain. In a series of 24 h laboratory tests, the performance of solitary adults of two predatory mite species, Cheyletus eruditus (Schrank) and Blattisocius tarsalis (Berlese), were assessed for controlling small numbers of the flour mite Acarus siro (L.). Tests were carried out in the presence or absence of prey refuges or grain debris to afford shelter to the flour mites. While C. eruditus had a significant effect on the motile stages of A. siro, in contrast B. tarsalis had a significant effect on the eggs. The maximum percentage of motile stages of A. siro eaten by C. eruditus was 82%, whereas the minimum percentage of A. siro eggs eaten by B. tarsalis was 99%. While the performance of C. eruditus in predating on motile stages of the flour mite was hindered by the presence of the prey refuge (38% eaten) and grain debris (25% eaten), the performance of B. tarsalis in predating on flour mite eggs was unaffected (100% eaten in presence of prey refuge or grain debris). In prolonged exposures (36 days) the performance of 2, 4 or 8 adult predators, either a single species or a combination of both, was assessed for their ability to control a population of the flour mite developing up to F2 from an initial inoculum of 80 females and 20 males, allowed to oviposit for 72 h in the absence of predatory mites. The maximum reduction in prey population of 80% was achieved with eight B. tarsalis. Combining the two predatory species did not enhance the reduction of A. siro population.  相似文献   

3.
Eggs of 13 species of common, economically important stored-product pest mites (Acarus siro, A. gracilis, Tyrophagus putrescentiae, T. brevicrinatus, Tyroborus lini, Aleuroglyphus ovatus, Caloglyphus redikorzevi, C. oudemansi, Lepidoglyphus destructor, Glycyphagus domesticus, Aeroglyphus robustus, Chortoglyphus arcuatus and Carpoglyphus lactis) from four families (Acaridae, Glycyphagidae, Chortoglyphidae, Carpoglyphidae) were studied in order to build a diagnostic key. The morphological study dealt with shape, size and surface sculpturing of eggs. Morphological details were visualised using scanning electron microscopy. A key for distinguishing eggs at genus and species level was developed for the major stored-product mites.  相似文献   

4.
Summary Free-living nematodes may be attacked and eaten by soil mites which are normally considered fungivores or saprophages. Three species in the genus Tyrophagus, common inhabitants of grassland soils and also common pests in stored products, museums and laboratories, are predators of nematodes. All active stages of the mites will voraciously consume nematodes. When offered nematodes and a choice of other food (baker's yeast and algae), 11% of the Tyrophagus putrescentiae, 23% of the T. zachvatkini, and 56% of the T. similis tested fed on nematodes. Tyrophagus zechvatkini and similis were reared on a diet consisting entirely of nematodes, and developed at rates similar to a fungal diet and produced viable offspring. Agar cultures of Aphelenchus avenae which were inoculated with five mating pairs of Tyrophagus zachvatkini had populations that were one-third less than mite-free controls. Observations indicate that nematodes may be attacked by tyrophagid mites when in a dry, anhydrobiotic state.  相似文献   

5.
Biological control of different species of pest with various species of generalist predators can potentially disrupt the control of pests through predator-predator interactions. We evaluate the impact of three species of generalist predatory mites on the biological control of green peach aphids, Myzus persicae (Sulzer) with the aphidophagous gall midge Aphidoletes aphidimyza (Rondani). The predatory mites tested were Neoseiulus cucumeris (Oudemans), Iphiseius degenerans (Berlese) and Amblyseius swirskii Athias–Henriot, which are all commonly used for pest control in greenhouse sweet pepper. All three species of predatory mites were found to feed on eggs of A. aphidimyza, even in the presence of abundant sweet pepper pollen, an alternative food source for the predatory mites. In a greenhouse experiment on sweet pepper, all three predators significantly reduced population densities of A. aphidimyza, but aphid densities only increased significantly in the presence of A. swirskii when compared to the treatment with A. aphidimyza only. This stronger effect of A. swirskii can be explained by the higher population densities that this predator reached on sweet pepper plants compared to the other two predator species. An additional experiment showed that female predatory midges do not avoid oviposition sites with the predator A. swirskii. On the contrary, they even deposited more eggs on plants with predatory mites than on plants without. Hence, this study shows that disruption of aphid control by predatory mites is a realistic scenario in sweet pepper, and needs to be considered when optimizing biological control strategies.  相似文献   

6.
Mites as Selective Fungal Carriers in Stored Grain Habitats   总被引:2,自引:0,他引:2  
Mites are well documented as vectors of micromycetes in stored products. Since their vectoring capacity is low due to their small size, they can be serious vectors only where there is selective transfer of a high load of specific fungal species. Therefore the aim of our work was to find out whether the transfer of fungi is selective. Four kinds of stored seeds (wheat, poppy, lettuce, mustard) infested by storage mites were subjected to mycological analysis. We compared the spectrum of micromycete species isolated from different species of mites (Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae, Caloglyphus rhizoglyphoides and Cheyletus malaccensis) and various kinds of stored seeds. Fungi were separately isolated from (a) the surface of mites, (b) the mites' digestive tract (= faeces), and (c) stored seeds and were then cultivated and determined. The fungal transport via mites is selective. This conclusion is supported by (i) lower numbers of isolated fungal species from mites than from seeds; (ii) lower Shannon–Weaver diversity index in the fungal communities isolated from mites than from seeds; (iii) significant effect of mites/seeds as environmental variables on fungal presence in a redundancy analysis (RDA); (iv) differences in composition of isolated fungi between mite species shown by RDA. The results of our work support the hypothesis that mite–fungal interactions are dependent on mite species. The fungi attractive to mites seem to be dispersed more than others. The selectivity of fungal transport via mites enhances their pest importance.  相似文献   

7.
Spider-Mite Problems and Control in Taiwan   总被引:3,自引:0,他引:3  
Problems with spider mites first appeared in Taiwan in 1958, eight years after the importation of synthetic pesticides, and the mites evolved into major pests on many crops during the 1980s. Of the 74 spider mite species recorded from Taiwan 10 are major pests, with Tetranychus kanzawai most important, followed by T. urticae, Panonychus citri, T. cinnabarinus, T. truncatus and Oligonychus litchii. Most crops suffer from more than one species. Spider mites reproduce year-round in Taiwan. Diapause occurs only in high-elevation areas. Precipitation is the most important abiotic factor restricting spider-mite populations. Control is usually accomplished by applying chemicals. Fifty acaricides are currently registered for the control of spider mites. Acaricide resistance is a serious problem, with regional variation in resistance levels. Several phytoseiid mites and a chrysopid predator have been studied for control of spider mites with good effect. Efforts to market these predators should be intensified so that biological control can be a real choice for farmers.  相似文献   

8.
In storage facilities one can find grain either in stored grain mass or in grain residues in the store corners or machinery. Although it is claimed that grain residues are serious pest reservoirs since they harbor numbers of stored product arthropods and are connected via continuous emigration with grain mass, the documentation for this is not convincing. Therefore in 78 selected grain stores, we simultaneously sampled the grain mass and residues in order to compare concurrent mite communities in these two different habitats. We found 30 species in about 614 000 individuals in residues and 23 species in about 20 000 individuals in grain mass. Canonical correspondence analysis (CCA) of transformed abundance data showed differences in the communities of mites in grain mass and residues: (i) species associated to grain residues (e.g. Tyrophagus longior, Tydeus interruptus, Acarus farris and Cheyletus eruditus) and (ii) species associated to both grain mass and grain residues (e.g. Tarsonemus granarius, Acarus siro, Tyrophagus putrescentiae, Lepidoglyphus destructor and Cheyletus malaccensis). Although the residue samples had more mites and higher species diversity than the stored grain mass, no correlation in mite abundance and species numbers between samples from grain residues and grain mass was found, thereby indicating low connectivity of these two habitats.  相似文献   

9.
To find suitable candidates for biological control of the bulb mite, Rhizoglyphus robini Claparède (Acari: Astigmata) on lilies, exploration was undertaken in areas where the bulb mite is an established pest (The Netherlands, Taiwan and Japan). Among the predators, found in association with R. robini in the field and under storage conditions, mesostigmatic mites predominate. The most abundant species were Hypoaspis aculeifer (Canestrini), Lasioseius bispinosus Evans and Parasitus fimetorum (Berlese). These predators appeared to feed and reproduce on a diet of exclusively R. robini and they were able to control the bulb mite in small-scale population experiments initiated with a 1:20 predator-prey ratio. Under laboratory conditions corresponding to lily bulb propagation (lily scales mixed with vermiculite and stored at 23°C and >90% RH) the laelapid mite, H. aculeifer, was the most effective predator; the ascid predator, L. bispinosus, was much less effective, but being relatively small and being successful in attacking the juvenile stages of the bulb mite it may be better able to search for bulb mites hidden inside the lily bulb. The parasitid predator, P. fimetorum, failed to control the bulb mite when vermiculite was used as a medium, but turned out to suppress this prey when peat was used instead. Various strains of H. aculeifer or closely related species were compared with respect to their impact and performance on bulb mites as prey: two Dutch strains, one obtained from Breezand and the other from 'tZand, a Taiwanese strain, a German strain that in contrast to the previously mentioned strains was not collected from lily bulbs, but from agricultural areas near Bremen and, in addition, a Canadian strain of a related species (Hypoaspis miles Berlese), known to control sciarid fly larvae. These comparative experiments showed that H. miles died out without noticeable impact on the bulb mite population whereas all strains of H. aculeifer were able to suppress the bulb mites to very low numbers. However, the numerical responses of the H. aculeifer strains differed in that those collected in association with the pest (Breezand > Taiwan > 'tZand) were superior to the strain from Bremen. These results do not provide support to the Hokkanen and Pimentel hypothesis, which states that predators forming an evolutionary new association with the pest are often more effective in biological control.  相似文献   

10.
Diatomaceous earths (DEs) are very promising natural-origin pesticides against stored-product pests, but there is still inadequate information about the effect of DEs against stored-product mites. For this purpose, laboratory bioassays were conducted to assess the effects of DEs against the predatory mites Blattisocius keegani Fox (Mesostigmata, Ascidae) and Cheyletus malaccensis Oudemans (Prostigmata, Cheyletidae). Two DEs were used: SilicoSec, which contains 92% SiO2, and PyriSec which contains 95.7% SilicoSec, 1.2% natural pyrethrum and 3.1% piperonyl butoxide. As prey, eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were used. The tests were conducted at three temperatures, 20, 25 and 30 °C, on wheat treated with DEs at two dose rates, 500 and 1000 ppm and mortality of mite individuals was measured after 7 days of exposure. For B. keegani, protonymphs were proved significantly less susceptible in comparison with adults, in most temperature/DE combinations examined. Also, for both DEs, significantly more B. keegani adults were dead at 30 °C than at the other two temperatures. C. malaccensis protonymphs were less susceptible than adults, for both DEs tested, with the exception of PyriSec at 30 °C. In the case of adults, in SilicoSec-treated wheat, significantly fewer individuals were dead at 30 °C in comparison with the other two temperatures, but this was reversed for PyriSec. The results of the present work indicate that both species are susceptible to the two DEs tested, but this susceptibility is highly determined by several factors such as formulation, dose rate and temperature.  相似文献   

11.
In two adjacent Japanese pear orchards (orchards 1 and 2), we studied the seasonal occurrence of the Kanzawa spider mite, Tetranychus kanzawai, and its predators. Also the response of these predators to the volatiles from kidney bean plants infested with T. kanzawai was investigated using trap boxes in orchard 1. The mite density in orchard 1 was unimodal, with one peak at the end of August. In this orchard, population development of the specialist insect predators, Scolothrips takahashii, Oligota kashmirica benefica and Stethorus japonicus, was almost synchronized with that of the spider mites. These predators disappeared when the density of their prey became very low in mid-September. Both S. takahashii and O. kashmirica benefica abruptly increased in number in orchard 2 when the spider mite population in orchard 1 decreased. These results suggested that some of the predators migrated from orchard 1 to orchard 2. In this period, predator-traps with T. kanzawai-infested bean plants attracted significantly more S. takahashii than traps with uninfested plants. Very few individuals of S. japonicus and O. kashimirica benefica were found in the traps, despite their abundance in orchard 1. The generalist insect predator, Orius sp., was attracted to the traps throughout the experimental period irrespective of the density of spider mites, although this predator was never observed inside the orchards.  相似文献   

12.
Stored product mites can often infest stored products, but currently there is little information regarding the efficacy of pesticides that can be used for control. In this study we evaluated several common pesticides formulated from single active ingredients (a.i.) or commercially available mixtures (chlorpyrifos, deltamethrin, beta-cyfluthrin, and a combination of deltamethrin and S-bioallethrin), plus an acaricide composed of permethrin, pyriproxyfen and benzyl benzolate, for efficacy against Acarus siro, Tyrophagus putrescentiae, and Aleuroglyphus ovatus. The pesticides were incorporated into the mite diets in a dose range of 10–1000 μg a.i. g−1 diet. Concentrations for suppression of 50 and 90% population growth and eradication (rC0) of mites were fit to linear regression models. None of the tested pesticides gave complete eradication of A. siro, which was the most tolerant of the three mite species tested. The most effective pesticide Allergoff 175 CS was a combination product (a nano-capsule suspension of permethrin, pyriproxyfen and benzyl benzolate) labeled for dust mites, with rC0 range of 463–2453 μg a.i. (permethrin) g−1 diet depending on the species. Least effective were chlorpyrifos and deltamethrin.  相似文献   

13.
The effects of physical factors (low barometric pressure, high and low temperature, light) on survival of stored food mites (Acaridae: Acarus siro L., Tyrophagus putrescentiae (Schrank), Aleuroglyphus ovatus (Troupeau), Caloglyphus berlesei (Michael); Glycyphagidae: Glycyphagus domesticus De Geer; Carpoglyphidae: Carpoglyphus lactis (L.); Pyroglyphidae: Dermatophagoides pteronyssinus (Troupeau); Cheyletidae: Cheyletus eruditus (Schrank) were studied. C. lactis was the most resistant species-most specimens (85%) of this species survived the longest exposure (96 h) to the lowest pressure (95 mm Hg) tested. It showed 100% mortality only after 80 h exposure to -15°C and it was able to withstand 45°C for about 1 h. Mites from the family Acaridae were killed by low pressure of 95 mm Hg after an exposure of only 48 h and after 1 h exposure to -15°C. Constant light has unfavourable effects on development and reproduction of the flour mite, A. siro.Our results may have some practical implications. Vacuum of 190 mm Hg will protect the food against the mites. Also low temperature -15°C could be used to control mites in seed.  相似文献   

14.
We investigated the response of the specialist insect predator Oligota kashmirica benefica (Coleoptera: Staphylinidae) to volatiles from lima bean leaves infested with the spider mite Tetranychus urticae (Acari: Tetranychidae), both in a Y-tube olfactometer and in a field in Kyoto, Japan. Adult male and female predators were significantly more attracted to T. urticae-infested leaves than to clean air. Adult male and female predators were not more attracted to uninfested leaves, artificially damaged leaves, or the spider mites and their visible products when compared to clean air. In a field trap experiment, 12 adult predators were caught in three traps containing T. urticae-infested lima bean plants over 13 days, whereas no adult predators were trapped in three traps containing uninfested lima bean plants during the same period. These results showed that O. kashmirica benefica adults responded to herbivore-induced plant volatiles from T. urticae-infested lima bean leaves under both laboratory and field conditions.  相似文献   

15.
Traps have been used extensively to provide early warning of hidden pest infestations. To date, however, there is only one type of trap on the market in the U.K. for storage mites, namely the BT mite trap, or monitor. Laboratory studies have shown that under the test conditions (20 °C, 65% RH) the BT trap is effective at detecting mites for at least 10 days for all three species tested: Lepidoglyphus destructor, Tyrophagus longior and Acarus siro. Further tests showed that all three species reached a trap at a distance of approximately 80 cm in a 24 h period. In experiments using 100 mites of each species, and regardless of either temperature (15 or 20 °C) or relative humidity (65 or 80% RH), the most abundant species in the traps was T. longior, followed by A. siro then L. destructor. Trap catches were highest at 20 °C and 65% RH. Temperature had a greater effect on mite numbers than humidity. Tests using different densities of each mite species showed that the number of L. destructor found in/on the trap was significantly reduced when either of the other two species was dominant. It would appear that there is an interaction between L. destructor and the other two mite species which affects relative numbers found within the trap.The British Crowns right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

16.
To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.  相似文献   

17.

Astigmatid mites can be used as prey for mass rearing of phytoseiid predators, but also as a supplemental food source to support predator populations in crops. Here we evaluated the potential of six species of astigmatid mites (living or frozen) as alternative food for the predatory mite Amblyseius swirskii Athias-Henriot in greenhouse crops. All prey mites tested were suitable for predator oviposition. In general, oviposition was greater when prey mites were reared on dog food with yeast than when they were reared on wheat bran with yeast. Amongst prey items provided as frozen diet, larvae of Thyreophagus entomophagus (Laboulbene), Acarus siro L. and Lepidoglyphus destructor (Schrank) that had been reared on dog food with yeast, resulted in the highest oviposition rates of A. swirskii. T. entomophagus larvae as frozen diet resulted in the shortest preimaginal developmental time of A. swirskii. On chrysanthemum plants, we found that the greatest increase in predator density occurred when living mites of T. entomophagous were used as a food source. This increase was greater than when predators were fed cattail pollen, a commonly used supplemental food. Effects on predators of providing living A. siro and L. destructor, or frozen larvae of T. entomophagous as food, were comparable with provision of pollen. Use of supplemental food in crops can be a risk if it is also consumed by omnivorous pests such as western flower thrips, Frankliniella occidentalis Pergande. However, we showed that both frozen and living mites of T. entomophagous were unsuitable for thrips oviposition. Hence, we believe that provision of prey mite species increases A. swirskii density, supporting biological control of thrips and other pests in greenhouse crops.

  相似文献   

18.
Using incorporated devices, Tetranychus urticae spider mites were rinsed from hydroponically-grown lima bean plants, collected, separated and blow-dried. This yielded a reliable and large volume of eggs and larvae, which were fed to Amblyseius womersleyi rearings on 15×5cm2 polyethylene arenas. Of several feeding regimes tested, daily feeding of 10mg T. urticae eggs and larvae resulted in the highest predator population levels. The best harvest period was between 15 and 27 days, when predator density exceeded 600 mites per arena. A preliminary automatic mass-rearing device was tested for A. womersleyi. This incorporated both rearing and harvesting procedures. A micro-feeder was developed to supply the required volume of spider mites and maize pollen (1:1 mixture) to the predators. A Bakelite rearing arena reduced the space requirements of a polyethylene arena, was more durable and an essential component in the automatic mass-rearing and harvesting. Mite harvesting is carried out through the use of a vacuum-head harvester. Supplements of (sterilized) spider mites, pollen, vermiculite and wheat bran are automatically added to the predators. The devices for harvesting, filling and packing are incorporated and synchronized and the entire system is controlled by a single slide-switch. The design and system can be expanded without changing the basic processes and program, for example to adopt it for other species of predaceous mites.  相似文献   

19.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

20.
Field surveys were conducted from 2004 to 2007 to determine the species composition and relative abundance of natural enemies associated with colonies of either the citrus red mite, Panonychus citri, or the two spotted spider mite, Tetranychus urticae, in Valencian citrus orchards (eastern Spain). Fourteen species were recorded, six phytoseiid mites and eight insect predators. Two of them are reported for the first time on citrus in Spain and two more are first reports as predators associated with T. urticae. The community of predators associated with T. urticae and P. citri was almost identical, and the Morisita–Horn index of similarity between both natural enemy complexes was close to one, suggesting that predators forage on both pest species. Quantifying the presence of many known spider mites predators in Valencian citrus orchards is an important first step towards spider mite control. A challenge for future studies will be to establish conservation and/or augmentation management strategies for these predators, especially to improve T. urticae biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号