首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viviparous aphids (Aphididae) constitute a monophyletic group within the Homoptera with more than 4000 extant species worldwide but higher diversity in temperate regions. Several aspects of their biology account for attention paid to this group of insects. Their plant-sap-sucking way of feeding with many species transmitting viruses to crop plants has important implications on crop management strategies. Cyclical parthenogenesis associated in many groups to host alternation and elaborate polyphenisms is of special interests for evolutionists. Finally, the ancient association of most aphid species with intracellular endosymbiotic bacteria (Buchnera sp.) has also received much attention from evolutionists interested in mechanisms involved in the symbiotic process. Knowing the phylogenetic relationships among major aphid taxa is of special interest to evolutionists interested in the above issues. However, until recently, molecular approaches to aphid phylogeny were absent and discussions on the evolution of aphid life-cycles and on evolutionary aspects of their symbiotic association with Buchnera were framed by morphology-based phylogenies. Recently, two reports using molecular approaches attempted to address the yet unresolved phylogeny of Aphididae with limited although somehow different conclusions. In the present report we study the utility of the long-wave opsin gene in resolving phylogenetic relationships among seven subfamilies within the Aphididae. Our results corroborate some previously proposed relationships and suggest a revision of some others. In particular, our data support grouping the analysed aphid species into three main clades, being the subfamily Lachninae one of them, which contradicts its generally accepted sistership relationship with the subfamily Aphidinae. Moreover, our data also suggest a basal position of Lachninae which has implications on current discussions about the ancestrality of conifer-feeding in modern aphids.  相似文献   

2.
A total of 25 aphid species were collected from 49 ornamental plant species in S?o Carlos-S?o Paulo, Brazil; 12 aphids were monophagous, four oligophagous and nine polyphagous. A total of 58 aphid-plant associations are recorded, 43 unknown from Brazil. Eucarazzia elegans (Ferrari, 1872) (Aphididae: Aphidinae: Macrosiphini) is recorded for the first time from Brazil, and Nectandra megapotamica Spreng. (Lauraceae) is recorded for the first time as host plant for Lizerius tuberculatus (E.E. Blanchard, 1939) (Drepanosiphidae: Drepanosiphinae: Lizeriini). We also describe the injuries caused by aphids to the ornamental plants.  相似文献   

3.
Many aphids display a remarkably complex life cycle of host alternation, in which cyclical parthenogenesis is combined with the obligate use of two unrelated host plants. We used mitochondrial ribosomal DNA (partial 12S and 16S) sequences to reconstruct the phylogeny of aphids, to determine how many origins of host alternation and correlated major host-plant shifts have occurred. Our results agreed with previous morphological studies in that species clustered with good support at the level of tribes. There was little well-supported phylogenetic structure at levels deeper than tribes, however, except for the monophyly of two subfamilies, Aphidinae and Lachninae. We argue that aphids experienced a rapid radiation at the tribal level, after host shifting from gymnosperms to angiosperms. A rapid radiation is consistent with aphid fossils, which record the presence of few subfamilies in the late Cretaceous, but most extant tribes by the early Tertiary. Plant fossils also record host plants of aphid tribes diversifying during this time. A hypothesized mechanism by which host alternation has evolved (fundatrix specialization), coupled with the rapid radiation, implies that this life cycle may have originated as often as in the ancestor of each tribe that displays it. We also consider, however, an alternative hypothesis of fewer origins. The basal radiation of Aphididae was dated from molecular sequences to have occurred at approximately 80–150 Mya.  相似文献   

4.
We used aphids (Aphidae) as a representative hemimetabolous host family to investigate patterns of parasitoid (Aphidiine) assemblage size. The aphidiine assemblages from 477 aphid species were used to estimate average assemblage size and the influence of eight ecological and taxonomic variables. Aphids species support an average of 1.7 aphidiine species. Aphid subfamily and invasion status (native or exotic) were the most important determinants of parasitoid richness, explaining 28% of the deviance in aphidiine assemblage size. Aphids within the largest aphid subfamily, the Aphidinae, support larger parasitoid assemblages than those in other subfamilies. Parasitoid diversity was also highest on exotic aphid hosts (within the Aphidinae) and on hosts in developed habitats (agricultural or urban), though the latter effect is weak. Patterns related to aphid food plant architecture were influenced by an interaction with aphid invasion status; parasitoid diversity drops with increasing architectural complexity on exotic aphids, whereas the diversities on native aphid hosts are similar on different plant types. Weak effects were also found for aphid food plant alternation (whether or not aphids switch hosts seasonally) and climate (annual range in temperature); alternating aphids support more parasitoids than non-alternating hosts, and parasitoid assemblage size is lowest in warm climates. Taxonomic isolation of aphids at the generic level showed no significant relationship with parasitoid diversity. Finally, in contrast to parasitoid assemblages on holometabolous hosts, sample size effects were weak for aphids, possibly due to the narrow host ranges of aphidiines. Received: 22 November 1997 / Accepted: 7 March 1998  相似文献   

5.

Background  

Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids.  相似文献   

6.
Despite the relative ease of isolating microsatellites, their development still requires substantial inputs of time, money and expertise. For this reason there is considerable interest in using existing microsatellites on species from which markers were not cloned. We tested cross‐species amplification of 48 existing aphid loci in species of the following genera: Aphidinae: Aphidini: Aphis and Rhopalosiphum; Aphidinae: Macrosiphini: Acyrthosiphum, Brevicoryne, Diuraphis, Illinoia, Macrosiphoniella, Macrosiphum, Metopeurum, Metapolophium, Myzus, Phorodon, Sitobion and Uroleucon and Neuquenaphidinae: Neuquenaphis. Our results show cross‐species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids.  相似文献   

7.
Abstract:  Aphid parasitoids have to cope with a range of different life-history features of their hosts in terms of size at maturity, abundance, ant-attendance, host specificity, host alternation and many more. Their hosts often show large fluctuations in numbers during a season or in different habitats and the plants they live on strongly shape their performance. Plant characteristics (i.e. life form, ecological strategy, light exposure , nutrient provision, habitat type) also affects the environment of aphids and their associated parasitoids. Using data restricted to Central European aphids and their primary parasitoids, effort is directed to identifying significant ecological variables, which might influence the diversity of parasitoid assemblages in aphids. Most parasitoid species were reported from the Aphidini and Macrosiphini. Aphids, which are very abundant, host-alternating, polyphagous and live on grasses appear to support larger parasitoid assemblages than those which are less abundant, non-host-alternating, mono- or oligophagous and feed on trees or herbs. Obligate myrmecophiles support fewer parasitoids than facultative myrmecophiles. Different degrees of mobility, the production of wax wool and alate adults did not have significant effects on parasitoid numbers. Discriminant function analysis using different degrees of ant attendance as dependant variable indicated that aphid specific characters and the number of primary parasitoids contributed most to the separation of the groups. Plant specific characters seem to contribute little to the development of different degrees of myrmecophily and parasitization patterns.  相似文献   

8.
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome‐level genome assembly of WAA—representing the first genome sequence from the aphid subfamily Eriosomatinae—using a combination of 10X Genomics linked‐reads and in vivo Hi‐C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein‐coding genes. The assembly is highly complete, including 97% of conserved arthropod single‐copy orthologues based on Benchmarking Universal Single‐Copy Orthologs (busco ) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high‐quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect–plant interactions and pest resistance management.  相似文献   

9.
Phylogenic relationships of the Psoroptidia, a group of primarily parasitic mites of vertebrates, were investigated based on sequences from three nuclear genes (4.2 kb aligned) sampled from 126 taxa. Several morphological classification schemes and a recent molecular analysis, suggesting that the group may not be monophyletic were statistically rejected by newly generated molecular data, and the results are robust under a range of analytical and partition strategies. Six families Psoroptidae, Lobalgidae (mammalian parasites), Pyroglyphidae (house dust mites and parasites inside feather calamus), Turbinoptidae (upper respiratory track parasites of birds), Psoroptoididae (downy feather mites), and Epidermoptidae (skin parasites of birds) form a well-supported monophyletic group (the epidermoptid-psoroptid complex). These relationships, recovered by combined and separate analyses of all gene partitions, were previously suspected based on some morphological evidence, but evidence has been dismissed as resulting from convergence based on similar parasitic ecologies. The existence of the epidermoptid-psoroptid complex and the statistical rejection of Sarcoptoidea (the morphology-based group joining all mammal-associated mites) indicate that current classification criteria, influenced as they are by host preferences, need to be reassessed for non-pterolichoid superfamilies. However, two of our findings remain sensitive to analytical methods and assumptions: (i) the families Heterocoptidae and Hypoderatidae as the first and second closest outgroups of Psoroptidia, respectively, and (ii) the superfamily Pterolichoidea (including Freyanoidea) forming a sister clade to the remaining psoroptidian superfamilies. Our findings suggest that (i) house dust mites (Pyroglyphidae: Dermatophagoidinae) originated from a parasitic ancestor within the core of Psoroptidia, violating a basic principle of evolution that it is virtually impossible for a permanent parasite to become free-living, and (ii) there were at least two shifts from presumably avian to mammalian hosts.  相似文献   

10.
Over the past dozen years, considerable effort has been devoted to unravelling the higher‐level phylogenetic relationships of viviparous aphids (Aphididae). However, to date, there is still no commonly accepted phylogenetic hypothesis. In this study, we establish a robust phylogenetic framework for the Aphididae based on mitochondrial genome sequences of 35 aphid species, 22 of which are newly reported. Phylogenetic inferences are performed using multiple data sets, alternative partitioning schemes and different model‐based methods. Our analyses result in well‐supported backbone relationships for the major lineages of aphids, suggesting the feasibility of mitogenome data for resolving phylogenetic questions in aphids. Mindarinae is strongly supported as the earliest branching lineage within Aphididae. A monophyletic clade comprising Calaphidinae, Phyllaphidinae and Saltusaphidinae is corroborated to be the sister group to the species‐richest subfamily Aphidinae. In addition, the morphologically defined subfamily Eriosomatinae is uncovered to be non‐monophyletic.  相似文献   

11.
BACKGROUND AND AIMS: A new infrageneric rearrangement for Veronica has been proposed based on the most recent evidence from DNA sequence data, morphological evidence, and biogeographical considerations. Looking for morphological synapomorphies for each monophyletic subgenus has been problematic, due to difficulties arising from widespread homoplasy (mainly parallel evolution). In an attempt to overcome these difficulties, previously underexplored morphological characters are starting to be studied in more depth. METHODS: A molecular phylogenetic hypothesis was used based on sequences of ITS (nuclear ribosomal DNA) and plastid trnL-F regions, as a framework to test the use of seed coat ultrastructure (studied under scanning electron microscope) in the systematics of the genus. A sample of 132 taxa representing ten of the 13 subgenera in Veronica, excluding the species of the southern hemisphere Hebe complex and the exclusively North American subgenus Synthyris, was studied. KEY RESULTS AND CONCLUSIONS: The results demonstrate that, in many cases, the ultrastucture of the testa can be employed to assess relationships of taxa within the genus, and the character provides additional support for molecular trees. Further characters relevant for the classification of Veronica, i.e. base chromosome number, iridoid chemical data, life cycle, inflorescence position, have been taken into consideration in a discussion where an attempt is made to highlight the best traits to characterize each subgenus investigated.  相似文献   

12.
? Premise of the study: The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. ? Methods: Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. ? Key results: Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. ? Conclusions: The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.  相似文献   

13.
Nawrocki, A. M., Schuchert, P. & Cartwright, P. (2009). Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae.—Zoologica Scripta, 39, 290–304. Generic‐ and family level classifications in Hydrozoa have been historically problematic due to limited morphological characters for phylogenetic analyses and thus taxonomy, as well as disagreement over the relative importance of polyp vs. medusa characters. Within the recently redefined suborder Capitata (Cnidaria: Hydrozoa: Hydroidolina), which includes 15 families and almost 200 valid species, family level relationships based on morphology alone have proven elusive, and there exist numerous conflicting proposals for the relationships of component species. Relationships within the speciose capitate family Corynidae also remain uncertain, for similar reasons. Here, we combine mitochondrial 16S, and nuclear 18S and 28S sequences from capitate hydrozoans representing 12 of the 15 valid capitate families, to examine family level relationships within Capitata. We further sample densely within Corynidae to investigate the validity of several generic‐level classification schemes that rely heavily on the presence/absence of a medusa, a character that has been questioned for its utility in generic‐level classification. We recover largely congruent tree topologies from all three markers, with 28S and the combined dataset providing the most resolution. Our study confirms the monophyly of the redefined Capitata, and provides resolution for family level relationships of most sampled families within the suborder. These analyses reveal Corynidae as paraphyletic and suggest that the limits of the family have been underestimated. Our results contradict all available generic‐level classification schemes for Corynidae. As classification schemes for this family have been largely based on reproductive characters such as the presence/absence of a medusa, our results suggest that these are not valid generic‐level characters for the clade. We suggest a new taxonomic structure for the lineage that includes all members of the newly redefined Corynidae, based on molecular and morphological synapomorphies for recovered clades within the group.  相似文献   

14.
The family Adelgidae is a small group of insects within Aphidoidea (Hemiptera). Adelgids are typically holocyclic with host‐alternation between the primary and secondary hosts, but some anholocyclic species persist either on the primary or secondary host. Like Aphididae, complexities and variation of adelgid life cycles are good models for understanding the evolution of complex life cycles. In this review, we outline the complex life cycles of adelgids, and current status and recent advances in adelgid life cycle studies. We also discuss the evolution of adelgid life cycles by comparing them to closely related aphid life cycles. A switch from holocycly to anholocycly on the primary host needs evolutionary innovations in gallicola behavior and reproduction. This radical evolution can be explained by mutations in a regulatory system that controls the sequence of gene sets producing phenotypes of one morph. In contrast, anholocycly on the secondary host consists of a series of exulis generations already existing in the holocycle. Thus, it may evolve by loss of primary‐host generations through extinction of the primary host, expansion beyond the geographical range of the primary host, or loss of male‐producing sexuparae that return to the primary host. Although the holocycle and its anholocyclic derivatives have been regarded as different species, morphological, ecological and genetic differences are too subtle to separate them into different species. The holocycle and its anholocyclic derivatives should not be split into different species without clearly identifiable morphological differences.  相似文献   

15.
Considering the addition of intermediate transmission steps during life cycle evolution, developmental plasticity, canalization forces and inherited parental effect must be invoked to explain new host colonization. Unfortunately, there is a lack of experimental procedures and relevant models to explore the adaptive value of alternative developmental phenotypes during life cycle evolution. However, within the monogeneans that are characterized by a direct life cycle, an extension of the transmission strategy of amphibian parasites has been reported within species of Polystoma and Metapolystoma (Polyopisthocotylea; Polystomatidae). In this study, we tested whether the infection success of Polystoma gallieni within tadpoles of its specific host, the Stripeless Tree Frog Hyla meridionalis, differs depending on the parental origin of the oncomiracidium. An increase in the infection success of the parasitic larvae when exposed to the same experimental conditions as their parents was expected as an adaptive pattern of non-genetic inherited information. Twice as many parasites were actually recorded from tadpoles infected with oncomiracidia hatching from eggs of the bladder parental phenotype (1.63 ± 0.82 parasites per host) than from tadpoles infected with oncomiracidia hatching from eggs of the branchial parental phenotype (0.83 ± 0.64 parasites per host). Because in natural environments the alternation of the two phenotypes is likely to occur due to the ecology of its host, the differential infection success within young tadpoles could have an adaptive value that favors the parasite transmission over time.  相似文献   

16.
Scleractinian corals, which include the architects of coral reefs, are found throughout the world's oceans and have left a rich fossil record over their 240 million year history. Their classification has been marked by confusion but recently developed molecular and morphological tools are now leading to a better understanding of the evolutionary history of this important group. Although morphological characters have been the basis of traditional classification in the group, they are relatively few in number. In addition, our current understanding of skeletal growth and homology is limited, and homoplasy is rampant, limiting the usefulness of morphological phylogenetics. Molecular phylogenetic hypotheses for the order, which have been primarily focused on reef-building corals, differ significantly from traditional classification. They suggest that the group is represented by two major lineages and do not support the monophyly of traditional suborders and most traditional families. It appears that once a substantial number of azooxanthellate taxa are included in molecular phylogenetic analyses, basal relationships within the group will be clearly defined. Understanding of relationships at lower taxonomic levels will be best clarified by combined analyses of morphological and molecular characters. Molecular phylogenies are being used to inform our understanding of the evolution of morphological characters in the Scleractinia. Better understanding of the evolution of these characters will help to integrate the systematics of fossil and extant taxa. We demonstrate how the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics.  相似文献   

17.
【目的】线粒体基因组分析已被应用于昆虫系统发育研究。本研究以蚜科Aphididae重要类群毛蚜亚科物种为代表,测定并比较分析了该类蚜虫的线粒体基因组特征,探讨了基于线粒体基因组信息的蚜虫系统发育关系重建。【方法】以毛蚜亚科三角枫多态毛蚜Periphyllus acerihabitans Zhang和针茅小毛蚜Chaetosiphella stipae Hille Ris Lambers,1947为研究对象,利用长短PCR相结合的方法测定线粒体基因组的序列,分析了基因组的基本特征;基于在线t RNAscan-SE Search Server搜索方法预测了t RNA的二级结构;基于12个物种(本研究获得的2个物种和10个Gen Bank上下载的物种数据)的蛋白编码基因(PCGs)序列,利用最大似然法和贝叶斯法重建了蚜科的系统发育关系。【结果】两种毛蚜均获得了约94%的线粒体基因组数据,P.acerihabitans获得了14 908 bp,控制区为1 205 bp;C.stipae获得了13 893 bp,控制区为609 bp。两种毛蚜同时获得33个基因,包含接近完整的13个蛋白编码基因(PCGs)(nad5不完整),18个tRNA,2个rRNA基因;ka/ks值表明,C.stipae的进化速率更快。从基因组组成、基因排列顺序、核苷酸组成分析、密码子使用情况、t RNA二级结构等特征来分析,两种蚜虫线粒体基因组基本特征相似。系统发育重建结果表明毛蚜亚科、蚜亚科的单系性得到了支持,毛蚜亚科位于蚜科的基部位置。【结论】两种毛蚜线粒体基因组的基本特征相似,符合蚜虫线粒体基因组的一般特征,两种线粒体基因组的长度差异主要来自控制区长度的不同;系统发育重建支持毛蚜亚科与蚜亚科的单系性,毛蚜亚科位于蚜科较为基部的位置。研究结果为蚜虫类系统发育重建提供了参考。  相似文献   

18.
Trypanosomes (genus Trypanosoma) are widespread blood parasites of vertebrates, usually transmitted by arthropod or leech vectors. Most trypanosomes have lifecycles that alternate between a vertebrate host, where they exist in the bloodstream, and an invertebrate host, where they develop in the alimentary tract. This raises the question of whether one type of host has had greater influence on the evolution of the genus. Working from the generally accepted view that trypanosomes are monophyletic, here we examine relationships between trypanosomes using phylogenies based on the genes for the small subunit ribosomal RNA (SSU rRNA) and the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH). New analysis of a combined dataset of both these genes provides strong support for many known clades of trypanosomes. It also resolves the deepest split within the genus between the Aquatic clade, which mainly contains trypanosomes of aquatic and amphibious vertebrates, and a clade of trypanosomes from terrestrial vertebrates. There is also strengthened support for two deep clades, one comprising a wide selection of mammalian trypanosomes and a tsetse fly-transmitted reptilian trypanosome, and the other combining two bird trypanosome subclades. Considering the vertebrate and invertebrate hosts of each clade, it is apparent that co-speciation played little role in trypanosome evolution. However most clades are associated with a type of vertebrate or invertebrate host, or both, indicating that 'host fitting' has been the principal mechanism for evolution of trypanosomes.  相似文献   

19.
Lysiphlebus testaceipes (Cresson) has a broad aphid host range; however the quality of these preys may interfere in its biological feature. This study aimed to evaluate the quality of three Macrosiphini, Brevicoryne brassicae (L.), Lipaphis erysimi (Kaltenbach) and Myzus persicae (Sulzer), and three Aphidini Schizaphis graminum (Rondani) Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover as hosts to L. testaceipes and to determine the relation possible of host preference, of size and quality of the host. The tests were carried out in climatic chamber at 25 +/- 1 degrees C, RH 70 +/- 10% and 12h photophase. The parasitoid did not oviposite in B. brassicae and L. erysimi, while the other species were nutritionally suitable to the parasitoid. L. testaceipes showed preference for aphids from tribe Aphidini and these hosts presented better quality to the parasitoid when compared to Macrosiphini. Interactions among size, preference and quality between the Aphidini were found. L testaceipes showed preference (parasitism rate 76.7%) for R. maidis, the bigger host (hind tibia with 0.281 mm). This host provided bigger size (hind tibia with 0.49 mm) and higher emergence rate (95.6%) to the parasitoid when compared to A. gossypii (parasitism rate of 55.7%). Also the smaller host A. gossypii (0.266 mm) provided smaller size hind tibia (0.45 mm) and higher mortality of the parasitoid (emergence rate 72.1%). However, the development time was shorter and the longevity was higher in A. gossypii (6.3 and 5.4 days, respectively) when compared to the host R. maidis (6.7 and 3.8 days, respectively), and not been related to host size.  相似文献   

20.
Philopteridae feather lice are a group of ectoparasitic insects which have intimate relationships with their avian hosts. Feather lice include an enormous number of described species; however, the relationships of major lineages have been clouded by homoplasious characters due to convergent evolution. In this study, a comprehensive phylogenomic analysis of the group is performed which includes 137 feather louse species. Several other analyses are also completed including dating analysis, cophylogenetic reconstructions, and ancestral character estimation to understand the evolution of complex morphological and ecological traits. Phylogenetic results recover high support for the placement of major feather louse lineages, but with lower support for long-branched enigmatic genera found at the base of the tree. The results of dating analyses suggest modern feather lice began to diversify approximately 49 million years ago following the adaptive radiation of their avian hosts. Cost-based cophylogenetic reconstructions recover a high frequency of host switching, while congruence-based methods indicate a significant level of congruence between host and parasite trees. Ancestral state reconstructions favour a generalist ancestor and water bird host at the root. The analyses completed provide insight into the evolution of a diverse group of ectoparasitic insects which infest a wide variety of avian hosts. The results represent the most comprehensive phylogenetic hypothesis of the group to date and provide a framework for future classification of the family into natural groupings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号