首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A physiological analysis of crop growth, reported in the previouspapers in this series, is extended to deal with the growth ofspaced plants, and applied to the growth data for M. atropurpureumsubject to several successive cycles of water deficit. Differences in growth between stressed and unstressed plantscan be quantitatively attributed to a reduction in the photosyntheticactivity of the leaves of stressed plants induced by increasingtheir leaf water deficits, and to an increase in the rate ofleaf abscission by the stressed plants. Macroptilium atropurpureum, growth analysis, water stress, photosynthesis, leaf abscission, stomatal conductance  相似文献   

2.
IRIT  KONSENS; J.  KIGEL 《Annals of botany》1991,67(4):391-399
The effect of temperature on production and abscission of flowerbuds, flowers and pods was studied in a determinate snap-beancultivar (cv. Tenderette). Under moderate temperature (e.g.27/17 °C) the onset of pod development was associated withcessation of flower bud production and with enhanced abscissionof flower buds. Raising night temperature from 17 °C to27 °C strongly reduced pod production, mature pod size andseeds per pod, while an increase in day temperature from 22°C to 32 °C had smaller and less consistent effects.Pod production under high night temperature was not constrainedby flower production since 27 °C at night promoted branchingand flower bud appearance. Under 32/27 °C day/night temperaturethe large reduction in pod set was due to enhanced abscissionof flower buds, flowers and young pods (< 3 cm). Flowershad the highest relative abscission followed by young pods andflower buds. Therefore, the onset of anthesis and of pod developmentwere the plant stages most sensitive to night temperature. Podslarger than 3 cm did not abscise but usually aborted and shrivelledunder high night temperature. The effects of 32/27 °C werenot due to transient water stresses and were observed even undercontinuous irrigation and mist-spraying. High temperature, flower production, pod set, seed set, abscission, snap bean, Phaseolus vulgaris L., cv. Tenderette  相似文献   

3.
Stomatal conductance of siratro declined linearly as leaf waterpotential fell until zero conductance was reached at –10bar. In a grass/legume pasture stomata of siratro respondedto humidity (saturation deficit), and to a lesser extent toleaf water potential, such that leaf water potential did notfall below –9 bar, whereas that of the grass continuedto decline for most of the day. The dual response of siratroto both humidity and leaf water potential suggests that thisspecies has an efficient two-stage stomatal control of waterloss which provides an explanation of its higher leaf waterpotential and greater drought avoidance compared with sown grassesin semi-arid areas of north-eastern Australia. Macroptilium atropurpureum (DC) Urb., siratro, Desmodium uncinatum, stomatal control, stomatal conductance, water loss, leaf water potential, drought avoidance, saturation deficit  相似文献   

4.
The effect of temperature on production and abscission of flowerbuds, flowers and pods was studied in a determinate snap-beancultivar (cv. Tenderette). Under moderate temperature (e.g.27/17°C) the onset of pod development was associated withcessation of flower bud production and with enhanced abscissionof flower buds. Raising night temperature from 17°C to 27°Cstrongly reduced pod production, mature pod size and seeds perpod, while an increase in day temperature from 22°C to 32°Chad smaller and less consistent effects. Pod production underhigh night temperature was not constrained by flower productionsince 27°C at night promoted branching and flower bud appearance.Under 32/27°C day/night temperature the large reductionin pod set was due to enhanced abscission of flower buds, flowersand young pods ( 3 cm). Flowers had the highest relative abscissionfollowed by young pods and flower buds. Therefore, the onsetof anthesis and of pod development were the plant stages mostsensitive to night temperature. Pods larger than 3 cm did notabscise but usually aborted and shrivelled under high nighttemperature. The effects of 32/27°C were not due to transientwater stresses and were observed even under continuous irrigationand mist-spraying. High temperature, flower production, pod set, seed set, abscission, snap bean, Phaseolus vulgaris L, Tenderette  相似文献   

5.
B. Ahmed  P. Quilt 《Plant and Soil》1980,57(2-3):187-194
Summary The effect of soil moisture stress on growth, nodulation and nitrogenase activity of two tropical forage legumes,Macroptilium atropurpureum cv. Siratro andDesmodium intortum cv. Greenleaf was studied in a pot experiment. After ten weeks growth, the highest moisture stress (20 per cent water holding capacity) significantly reduced only the top weight of both plants. Moisture stress progressively retarded top growth in the two legumes. Similar trends were also observed in defoliated plants. Moisture stress had little or no effect on the nodulation or nitrogenase activity of the plants.  相似文献   

6.
Factors influencing organogenetic responses and bolting of adventitiouslyformed buds were investigated in in vitro cultured cotyledon,stem and leaf explants of Rudbeckia bicolor. Application ofnaphthaleneacetic acid (NAA) induced adventitious root formationand that of benzyladenine (BA) induced adventitious bud differentiation.When NAA at a low concentration was added together with BA,bud initiation and development were promoted further, althoughoptimal concentrations of NAA and BA varied with the kind ofexplants used. Gibberellic acid caused stem elongation of adventitiousbuds, and occasionally differentiation of floral buds on theapices of developed shoots. The action of N-phenyl-N'-(4-pyridyl)urea(4PU) and its derivative (4PU-Cl) on adventitious bud formationwas also examined. (Received August 8, 1981; Accepted November 9, 1981)  相似文献   

7.
The gene le25 is an abscisic acid (ABA)-induced gene of tomatowhich is expressed both in wilted vegetative organs and developingseeds. Spatial and temporal expression was analysed in tobaccoplants transformed with a chimeric gene in which 5'-upstreamDNA sequences of le25 were fused to the E. coli uidA gene, whichencodes ß-glucuronidase (GUS). Histochemical stainingrevealed that GUS was expressed in all tissues of vegetativeorgans in response to water deficit. Exogenous ABA induced expressionto a lesser extent, even though ABA content was the same asdroughtstressed leaves, indicating a difference in responseto endogenous ABA compared to exogenous ABA. Water-deficit-inducedGUS expression in floral tissues was examined in pre-anthesisfloral buds from four different stages (I–IV; 11, 16,33, 49 mm bud length, respectively). While non-stressed floralorgans showed no GUS activity except in pollen at stages IIIand IV, GUS activity was water-deficit-induced in sepals ofall stages, petals of stage II, and stigmas of stage II andIII. In seeds, GUS activity was detected in both the embryoand endosperm at 15 d post-anthesis, which coincided with alarge increase in the concentration of ABA in the seed. In transgenicplants, the le25 5'-flanking DNA drove expression of GUS duringwater deficit in two modes: non-tissue-specific expression invegetative organs, and tissue-specific expression in reproductiveorgans. The location of GUS activity indicated that ABA concentrationis elevated throughout the tissues of the leaf during periodsof water deficit. Key words: Tomato, ABA, drought stress, lea gene, water deficit  相似文献   

8.
Successive sets of cuttings of three white clover genotypeswere raised in a 15 °C growth room and transferred to thefield at 14 d intervals over the course of a year. Rates ofleaf appearance (leaves per stolon growing point per unit time)were found to be closely correlated with 10 cm soil temperatures.Petiole lengths, and weights of the lamina+petiole increasedin May and decreased towards the end of August, but also exhibiteda marked response to a mid-season water deficit. In the conditionsof the experiment (i.e. in the absence of competition from neighbouringplants) the vast majority of axillary buds developed into visiblebranches at all times of the year. There was, however, an increasein the nodal age at which bud development was first observedin winter. Deferred bud development was also observed, particularlyin one genotype, during periods characterized by dry soil surfaceconditions. The results are discussed in relation to observedpatterns of stolon branching in sward conditions. White clover, Trifolium repens, axillary bud development, branching, growing points, leaf appearance rate, petiole length, soil moisture, soil temperature  相似文献   

9.
Evidence is presented to show that in leaf squares of Peperomiasandersii bud initiation does not occur independently of rooting.Buds were formed close to the point of origin of roots and,in treatments where rooting was delayed, budding was affectedsimilarly. Promotion of root formation by pretreatment of squareswith 3-indolylbutyric acid was accompanied by increases in thenumber of buds initiated. Kinetin and N6-benzyladenine whichinhibited the initiation of roots also inhibited the initiationof buds. This was in contrast to the effect of these two compoundson leaf squares of Begonia rex where rooting was similarly inhibitedbut bud initiation was markedly promoted. When leaf squaresof Peperomia were grown in contact with relatively high concentrationsof kinetin buds were occasionally formed in the absence of roots.Removal of roots from leaf squares of Peperomia by excisionprevented the formation of buds.  相似文献   

10.
In Torenia stem segments cultured on a defined medium from whichammonium nitrate and growth regulators were omitted, adventitiousbuds were readily formed from epidermal tissue, with subsequentdifferentiation of floral buds. Using this plant material, thecorrelation between the time of application of various chemicalsand the time-course of floral bud differentiation was investigated.Histological examination showed that adventitious buds werevegetative during the first two weeks of the culture, and floralprimordia appeared after about three to four weeks of culture.We divided the flowering process in Torenia stem segments intothe following 3 phases: the first phase (first 2 weeks) duringwhich adventitious buds are formed, the second phase (3rd and4th weeks) during which floral buds are initiated and the thirdphase (5th to 12th weeks) during which floral buds develop.Then we added IAA, zeatin, ammonium nitrate or a high concentrationof sucrose to the medium during one, two or three of these phases.Ammonium nitrate added during the third phase suppressed floralbud development, but the high concentration of sucrose givenduring this phase stimulated it. These two chemicals influencedonly the development of floral buds previously initiated. Theapplication of IAA during the first phase promoted both theinitiation and development of floral buds. However, its applicationafter 2 weeks of culture failed to promote floral bud formation.Zeatin inhibited floral bud formation in a manner similar toammonium nitrate, but if it was added to the medium only duringthe first phase, it slightly promoted the initiation and developmentof floral buds. (Received July 7, 1981; Accepted October 12, 1981)  相似文献   

11.
The morphology of axillary shoots of pea plants (Pisum sativumL. cv. Alaska) was analysed as a function of the position ofthe bud on the plant axis and the stage of plant developmentwhen the buds began to grow. Buds from the three most basalnodes were stimulated to develop by decapitating the main shootwhen buds were still growing (4 d plants), shortly after budsbecame dormant (7 d plants) or after the initiation of floweringon the main shoot (post-flowering plants, about 21 d after sowing).Branch shoots were scored for node of floral initiation (NFI),shoot length, and node of multiple leaflets (NML), a measureof leaf complexity. Shoots that developed spontaneously fromupper nodes (nodes 5-9) on intact post-flowering plants werescored for NFI. NFI for basal buds on 4 and 7 d plants variedas a function of nodal position and ranged from 5 to 6·7nodes. NFI on these plants was not influenced by bud size orwhether a bud was growing or dormant when the plant was decapitated.NFI for shoots derived from basal buds on decapitated post-floweringplants and upper nodes on intact post-flowering plants was about4. Reduced NFI on post-flowering plants may be due to depletionof a cotyledon-derived floral inhibitor. Basal axillary shootson 4 d plants were about 20% longer than those on 7 d plantsand about five times longer than those on post-flowering plants.These differences may be due to depletion of gibberellic acidsfrom the cotyledons. NFI and NML for the main shoot and forbasal axillary shoots were similar under some experimental conditionsbut different under other conditions, so it is likely that eachdevelopmental transition is regulated independently.Copyright1995, 1999 Academic Press Apical dominance, bud development, garden pea, initiation of flowering, Pisum sativum L., shoot morphology  相似文献   

12.
LOO  E. N. VAN 《Annals of botany》1992,70(6):511-518
Tillering and growth parameters of perennial ryegrass cultivarsWendy (diploid) and Condesa (tetraploid) were determined ina glasshouse experiment using hydroponics at low (–1·3MPa) and normal water potential (0 MPa). At –1·3MPa, leaf extension rate was reduced by 36%. Final plant tillernumber was 20% lower at –1·3 MPa because of a 12%reduction in the leaf appearance rate in the first weeks afterthe start of the treatments. Site filling, the relative increasein tiller number per leaf appearance interval, was high (0.61)-butstill lower than theoretically possible-and was only slightlyaffected by water potential. Site filling was shown to be strictlyrelated to the number of inhibited plus unemerged tiller buds.Dry matter production was 64% lower at –1·3 MPa.Relative growth rate (RGR) was, on average, 17% lower at –1·3MPa, but the reduction was greater just after the treatmentsstarted. Also, net assimilation rate (NAR) was reduced moreby low water potential just after the start of the treatments.Specific leaf area (SLA) was 13 % lower at –1·3MPa for Wendy, but not significantly reduced for Condesa. Contraryto expectations based on the theory of the functional balancebetween root and shoot, leaf weight ratio was slightly higherat –1·3 MPa. From comparison of the results ofthis study with published data, it is concluded that effectsof drought in the field on tillering cannot be attributed onlyto low water potential. Lolium perenne L., perennial ryegrass, tillering, site filling, leaf appearance, leaf extension, growth analysis, water potential  相似文献   

13.
Two SD cycles are necessary for initiation of floral buds inImpatiens balsamina L., var. Rose. Floral buds are also initiatedin plants exposed to only one SD cycle +16- or 20-hr LDs; LDsby themselves are noninductive. Floral bud initiation is hastenedand the number of initiated flowers increases with longer darkperiods in the supplementary photoperiodic cycles. (Received May 6, 1972; )  相似文献   

14.
The relationship between seed number per pod and senescenceof the leaf in its axil was examined in a determinate cowpea(Vigna unguiculata L. Walp) variety C.779. The seed number perpod was reduced at all fruiting nodes by surgical excision ofpart of the 4-d-old pod. Leaf senescence as measured by lossof leaf area, chlorophyll content and soluble protein was sloweddown in leaves supporting the development of an artificiallyreduced number of seeds. Diminished nitrogen mobilization fromthe leaf could not account for the reduced rate of leaf senescence.The result suggests the involvement of a senescence signal fromthe developing seeds to the leaf in its axil. Development ofthe basal half of the excised pod in the cowpea provides a uniquesystem for manipulating seed number per pod. Senescence, monocarpic, chlorophyll, protein, Vigna unguiculata, cowpea  相似文献   

15.
Seedling-cuttings of Pharbitis nil, a typical short-day plant,initiated floral buds under continuous light of 2200–2400lux at 24–26?C. When cultured under poor-nutritional conditions,the node bearing the first floral bud was as low as the 4thone. A close relation between floral initiation under continuouslight and retarded vegetative growth was observed. (Received September 28, 1973; )  相似文献   

16.
Overwintering buds of blackcurrant cultivars 'Ben Lomond' and'Ben More' were examined by differential thermal analysis (DTA).Photographic evidence relates the first (primary) exotherm tothe freezing of water in the basal pith and bud scales. Thenumber of secondary exotherms either matched, or was fewer than,the number of floral racemes within the bud. There is evidencein the structure of the secondary exotherms that the freezingof individual primordia was being recorded.Copyright 1993, 1999Academic Press Differential thermal analysis, freezing injury, buds, Ribes nigrum, blackcurrant  相似文献   

17.
InRosa hybridaL. cv. Ruidriko ‘Vivaldi’®, theeffect of position on growth and development potentials of axillarybuds was investigated by single internode cuttings excised alongthe floral stem and its bearing shoot. The experiments werecarried out in both glasshouses and in a phytotron. The studyfirstly concerned the development of the primary shoot fromthe onset of bud growth until anthesis. The primary shoot wasthen bent horizontally to promote the growth of the two mostproximal secondary buds, the collateral buds, already differentiatedinside the primary bud. They gave rise to basal shoots. In thebasipetal direction, the axillary buds along the floral stemexhibited both an increase in the lag time before bud growthand a decrease in bud growth percentage, demonstrating the existenceof a physiological basipetal gradient of inhibition intrinsicto the buds or due to short range correlations. The same basipetalgradient of inhibition was observed along the floral stem andits bearing shoot, demonstrating that the age of the bud wasnot a major factor in determining the rate of bud growth. Afterbending the primary shoot, the percentage of collateral budgrowth was also affected by the cutting position. The more proximalthe cutting, the lower the sprouting ability of collateral buds.The growth potential of these buds appeared to be already determinedinside the main bud before cutting excision.Copyright 1998 Annalsof Botany Company Axillary bud; basal shoot; cutting; development; endodormancy; growth; paradormancy; position; primary shoot;Rosa hybridaL.; rose; secondary bud; topophysis.  相似文献   

18.
Both the vegetative and the floral meristems of glasshouse-grownsunflowers respond to nitrogen supply in the same way. The durationof leaf and floret production is unaffected but the rate ofproduction is decreased by low nitrogen supply. Thus both finalleaf number and floret number are lowest at the lowest nitrogensupply. The activity of the vegetative meristem is directlyrelated to the content of reduced nitrogen of the plant. Relief of nitrogen stress in the middle of the vegetative phaseallows final leaf number to reach the unstressed number. However,relief of nitrogen stress during floral initiation showed thatfloret number is a function of the plant's content of reducednitrogen at the beginning of floret production. Relief of nitrogenstress from the middle to the end of floret production did notincrease floret number. Nitrogen supply did not influence the duration but did affectthe rate of leaf expansion. Relief of nitrogen stress afterleaf and floral initiation were complete caused a larger finalarea in those leaves still expanding and also lessened apicaldominance so that some axillary buds developed into small flowers. Helianthus annuus L, sunflower, nitrogen supply, leaf production, leaf growth, floret production  相似文献   

19.
OFIR  M. 《Annals of botany》1975,39(2):213-217
The tillering phase in Hordeum bulbosum L. is terminated whenthe newly-formed axillary buds no longer emerge as tillers,but differentiate into dormant regeneration buds. The patternof development of the axillary buds differs during the tilleringphase and the post-tillering phase. During the former, accumulationof leaf primordia corresponds to the age of the bud, i.e., leafnumber per bud increases basipetally along the shoot. Duringthe post-tillering phase, leaf number per bud decreases basipetallyfrom the base of the future bulb internode. This transitionis brought about by an acceleration in the rate of accumulationof leaf primordia which is more sustained in the buds situatedcloser to the base of the bulb internode. These positional differencesin the morphogenesis of the regeneration buds are reflectedin their physiological responses during the relaxation of dormancyand activation of the buds.  相似文献   

20.
The effect of floral-bud removal at different stages of developmenton the plant height and on the total number of buds of Petuniawas studied. Continuous removal of all the floral buds 2 d beforeanthesis caused a marked decrease in plant height and also increasedthe total number of floral buds formed thereafter. At otherstages of floral bud development, bud removal had a lesser effecton both phenomena. Moreover, the plants did not respond to budremoval at anthesis. GA3 at 25 ppm applied to plants from which the buds had beenremoved, promoted stem elongation. The most pronounced effectwas on plants from which the buds were removed 2 d before anthesis,but it had no effect on plants from which the buds were removedat anthesis stage. The possible involvement of endogenous growth hormones in theresponse of Petunia plants to floral-bud removal and to applicationof GA3 is discussed. Bud removal, bud number, dwarfness, GA3, Petunia, plant height  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号