首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insects visiting sporocarps of Elfvingia applanata, a wood-rotting bracket fungus, were examined in Kyoto, central Japan. Mycodrosophila flies (Drosophilidae: Diptera) were predominant and visited the spore-producing sporocarps exclusively. They were observed feeding on the spores, and a number of spores seemed to be alive even after having passed through insects digestive tracts. In addition, the insects attached a number of spores on their body surfaces. In a rearing experiment with insects caught from E. applanata sporocarps, Mycodrosophila flies excreted 7700–469 000 and dropped 10–000–329 000 of viable spores during 48 h after collection. They were supposed to migrate among the sporocarps of other bracket fungi growing on different logs or stumps, suggesting that Mycodrosophila flies may act as spore-dispersal agents for E. applanata.  相似文献   

2.
We compared community composition, density, and species richness of herbivorous insects on the introduced plant Solidago altissima L. (Asteraceae) and the related native species Solidago virgaurea L. in Japan. We found large differences in community composition on the two Solidago species. Five hemipteran sap feeders were found only on S. altissima. Two of them, the aphid Uroleucon nigrotuberculatum Olive (Hemiptera: Aphididae) and the scale insect Parasaissetia nigra Nietner (Hemiptera: Coccidae), were exotic species, accounting for 62% of the total individuals on S. altissima. These exotic sap feeders mostly determined the difference of community composition on the two plant species. In contrast, the herbivore community on S. virgaurea consisted predominately of five native insects: two lepidopteran leaf chewers and three dipteran leaf miners. Overall species richness did not differ between the plants because the increased species richness of sap feeders was offset by the decreased richness of leaf chewers and leaf miners on S. altissima. The overall density of herbivorous insects was higher on S. altissima than on S. virgaurea, because of the high density of the two exotic sap feeding species on S. altissima. We discuss the importance of analyzing community composition in terms of feeding guilds of insect herbivores for understanding how communities of insect herbivores are organized on introduced plants in novel habitats.  相似文献   

3.
The plant-pathogenic fungus Claviceps paspali infects florets of the dallisgrass Paspalum dilatatum and induces the plant to produce honeydew (containing massive amounts of conidia), which in turn attracts insects for dispersal of the fungal spores. In Japan, the association between C. paspali and its host plant is common, although both P. dilatatum and C. paspali are introduced species. To determine the dispersal agents of the introduced C. paspali, we examined which insects sapped the P. dilatatum honeydew produced by C. paspali. The study was conducted from September to October 2003 in central Japan. Adults of 48 moth species and two lacewing species visited infected spikelets of P. dilatatum and sapped the honeydew at night. The dominant moths, which carried C. paspali conidia on their proboscises, migrate long distances every year. Therefore, migratory moths may transmit C. paspali spores from diseased to healthy host plants and may have spread C. paspali to other areas in Japan where C. paspali did not previously exist.  相似文献   

4.
We studied the indirect effects of an aphid Uroleucon nigrotuberculatum on density and performance of herbivorous insects through tending ants and modification of plant traits on a tall goldenrod Solidago altissima in Japan. To examine ant-mediated indirect effects of the aphid on the leafhopper and geometrid moth caterpillars, we conducted an experiment in which we manipulated aphid densities. The aphid decreased the density of these herbivorous insects through ant-mediated indirect effects, because honeydew scattered by the aphid-attracted ants that then removed them. To examine plant-mediated indirect effects of the aphid on two temporally separated insects, a scale insect and a grasshopper, we compared the density and performance of these herbivorous insects on aphid-inoculated plants and aphid-free plants. Aphid-induced plant modifications had different effects on the scale insect and grasshopper. The aphid indirectly decreased the density and survivorship of the scale insect. On the other hand, the number of grasshoppers increased as a result of the increased number of leaves and the increased nitrogen content induced by prior aphid feeding. However, aphid infestation did not affect the survival of the grasshopper. Thus, the aphid has large indirect effects on co-occurring herbivorous insects through the removal behavior of tending ants and on temporally separated herbivorous insects through changes in quality and quantity of the tall goldenrod.  相似文献   

5.
Many insects harbor specific bacteria in their digestive tract, and these gut microbiota often play important roles in digestion and nutrient provisioning. While it is common for a given insect species to harbor a representative gut microbial community as a population, how this community is acquired and maintained from generation to generation is not known for most xylophagous insects, except termites. In this study, we examined acquisition of gut microbiota by the wood-feeding beetle, Anoplophora glabripennis, by identifying and comparing microbial community members among different life stages of the insect and with microbes it encounters in the environment. Automated ribosomal intergenic spacer analysis was employed to compare bacterial communities present in the egg and larval stages of A. glabripennis as well as with microbes found in the oviposition site and the surrounding woody tissue. Multivariate analyses were used to identify relationships between sample type and specific bacterial types (operational taxonomic units). From this analysis, bacteria that were derived from the environment, the oviposition site, and/or the egg were identified and compared with taxa found in larvae. Results showed that while some larval microbes were derived from environmental sources, other members of the larval microbial community appear to be vertically transmitted. These findings could lead to a better understanding of which microbial species are critical for the survival of this insect and to development of techniques that could be used to alter this community to disrupt the digestive physiology of the host insect as a biological control measure.  相似文献   

6.
The crystal δ-endotoxins of Bacillus thuringiensis (Bt) are a family of insecticidal proteins which have been known for some time to kill insects by lysing their gut epithelial cells, but the precise molecular mechanism of toxicity has remained elusive. The recent publication of the crystal structure of a Bt δ-endotoxin has made it possible for us to model the molecular events that occur as the toxin binds to its receptor and inserts into the membrane to form a pore. Using our knowledge of insect gut physiology, we can also predict the effect on the insect of the formation of a toxic pore. We present a new model to explain the events that occur in the insect gut during toxin action.  相似文献   

7.
Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus) was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs.  相似文献   

8.
Associations with symbiotic microorganisms are a major source for evolutionary innovation in eukaryotes. Arthropods have long served as model systems to study such associations, especially since Paul Buchner’s (1965) seminal work that beautifully illustrated the enormous diversity of microorganisms associated with insects. Particularly high taxonomic and functional diversities of microbial symbionts have been found in the guts and gut‐associated organs of insects. These microorganisms play important roles in the digestion, nutrition and defence of the host. However, most studies of gut microorganisms have focused on single host taxa, limiting the ability to draw general conclusions on composition and functional roles of the insect gut microbiota. This is especially true for the diverse and important insect order Hymenoptera that comprises the bees, wasps and ants. Recently, Russell et al. (2009) analysed the bacterial community associated with diverse ant species and found evidence for changes in the microbial gut community coinciding with the evolution of herbivory. In this issue of Molecular Ecology, Martinson et al. (2011) provide the first broad‐scale bacterial survey for bees. Their findings substantiate earlier evidence for a surprisingly simple gut microbiota in honeybees (Apis mellifera) that is composed of only six to ten major phylotypes. Importantly, Martinson et al. demonstrate for the first time that the same bacterial phylotypes are major constituents of other Apis as well as Bombus species, but not of any other bees and wasps outside of the corbiculate bees, a clade of four tribes within the subfamily Apinae. These results indicate that corbiculate bees harbour a specific and possibly co‐evolved bacterial community in their digestive tract. Furthermore, the comparison with other bees and wasps suggests that changes in social lifestyle may have had a stronger effect on the evolution of the gut microbiota than the dietary shift from predatory ancestors to pollen‐feeding (i.e. herbivorous) species. These findings have far‐reaching implications for research on the microbial symbionts of insects as well as on the nutritional physiology of the ecologically and economically important group of corbiculate bees.  相似文献   

9.
Nine rainpools in the savanna of northern Bolivia were examined using a random, semi‐quantitative sampling method. Both the macrophyte and insect assemblages showed that the longevity of a pool tended to be the dominant influence on the colonizing biota in the Tropics. Twenty‐four families of insects were recorded, including seven Heteroptera, five Odonata and five Diptera. The highly ephemeral (A‐)pools, which were dominated by beetles, differed from longer‐lived waters (B‐ and C‐pools). The composition of the insect assemblages in the B‐ and C‐pools formed a continuum, and the Chironomidae became more numerous and diverse with increasing water body longevity and habitat complexity. Out of the 20 recorded chironomid genera, three uncommon larval types are presented (Chironomini Gen X, "Tanytarsus”; (b), "Tanytarsus”; (dark L.o.). The study area is among the least researched in Bolivia, so many insects, and the chironomids in particular, are suspected as being newly discovered species.  相似文献   

10.
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is the principal vector of citrus greening (huanglongbing) disease. Invasion of new areas by the vector increases the risk of further spread of the disease and has economic impacts on the global citrus industry. Effective implementation of vector surveys is essential to contain disease outbreaks. This is especially true in countries such as Japan, where most of the major citrus‐producing areas are free from citrus greening. Recently, vector surveys have been routinely conducted to maintain ‘disease‐free’ and ‘disease‐ and vector‐free’ areas in Japan, and improvement of methods that can detect D. citri in native insect populations is imperative. Here, we developed a method of using conventional and real‐time PCR to detect D. citri among bulk insects captured in sticky traps without the need for preliminary differentiation steps based on morphology. DNA fragments of D. citri were specifically detected by both conventional and real‐time PCR in a mixture of a 10?3 dilution (ca. 0.008–0.009 ng/μl) of D. citriDNA and 100 ng/μl of bulk insect DNA, indicating that small body parts such as pieces of leg or parts of wings of D. citri were detectable in the bulk insect samples. No misleading amplification of fragments from the other psyllid species and citrus pests we used occurred under our PCR conditions. Our results suggest that the technique is applicable to extensive surveys of D. citri in early warning programmes.  相似文献   

11.
Quarantine insects are economically important pests that frequently invade new habitats. A rapid and accurate monitoring method to trace the geographical sources of invaders is required for their prevention, detection, and eradication. Current methods based on genetics are typically time-consuming. Here, we developed a novel tracing method based on insect gut microbiota. The source location of the insect gut microbiota can be used to rapidly determine the geographical origin of the insect. We analyzed 179 gut microbiota samples from 591 individuals of 22 quarantine insect species collected from 36 regions in China. The gut microbiota of these insects primarily included Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Proteobacteria, and Tenericutes. The diversity of the insect gut microbiota was closely associated with geographical and environmental factors. Different insect species could be distinguished based on the composition of gut microbiota at the phylum level. Populations of individual insect species from different regions could be distinguished based on the composition of gut microbiota at the phylum, class, and order levels. A method for determining the geographical origins of invasive insect species has been established; however, its practical application requires further investigations before implementation.  相似文献   

12.
13.
Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host–microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose‐derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations.  相似文献   

14.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

15.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

16.
The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.  相似文献   

17.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

18.
19.
The gut content composition of three species of the superfamily Perloidea, Marthamea selysii (Pictet, 1842), Dinocras cephalotes (Curtis, 1827), and Siphonoperla torrentium (Pictet, 1842), from northwestern Spain is analyzed and described. The quantity of food found in all adults of M. selysii and D. cephalotes was very low. Spores of fungi and pollen of angiosperms were the most abundant components in the diet of M. selysii. Pollen of angiosperms, followed by fungal spores, detritus, and animal matter were the most abundant components in the diet of both sexes of D. cephalotes. The adult diet of both sexes of S. torrentium consists mainly of pollen and agrees with data of the previous studies on this same species in other areas. Our results also show that the consumption of animal matter could be a way to get a nutritional complement and is more common than previously considered in adult stoneflies. The obtained data support the hypothesis that adult feeding is less important for large stoneflies (as M. selysii and D. cephalotes) than for other smaller Perloidea (as S. torrentium), but feeding habits in these large Plecoptera could not be as negligible as previously supposed.  相似文献   

20.
The production of Nosema algerae spores was examined in Pieris brassicae. Spore replication in the insect host followed a logistic pattern of development. The factors studied which affected spore production and replication were dose level (5 × 102, 5 × 103, and 5 × 104 spores per insect), larval instar (fourth and fifth), and cool pretreatment of the insects at 20°C prior to inoculation compared with a constant temperature of 26°C. A three-way analysis showed the interactions between these factors. The logistic pattern of spore replication was used to explain the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号