首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous aggregation of glycosylated, desialated, oxidized and malondialdehyde modified low density lipoprotein (LDL) as well as LDL of coronary heart disease patients has been discovered using methods for determination of light transmission fluctuations in suspensions and gel filtration. At the same time; LDL of healthy donors failed to aggregate under conditions of cellular culture. On the other hand, human aortic cells from unaffected intima incubated with modified LDL, but not native LDL of healthy donors, showed a rise in esterified cholesterol levels. There was a strong correlation between the degree of LDL aggregation and intracellular cholesterol ester accumulation (r-0.86, p 0.001, n-21). Removal of aggregates by passing preparations through and 0.1 um filter significantly inhibited the accumulation of cholesterol esters. The obtained data point to the essential, if not decisive, role of LDL aggregation in the processes of lipid accumulation by intimal cells in vitro.  相似文献   

2.
We have tested a hypothesis that aggregates of modified low density lipoproteins (LDL) play the key role in the accumulation of lipids by cells of unaffected aortic intima. It was demonstrated using analysis of relative dispersion of light transmission fluctuations as well as gel filtration on Sepharose CL-2B that LDL modified by oxidation, glycosylation, desialylation and malondialdehyde treatment form aggregates under the conditions of culture. Native LDL failed to aggregate under the same conditions. It was demonstrated that modified LDL, unlike native LDL, bring about a 2- to 3-fold rise in cholesteryl ester levels of cultured cells. Moreover, direct and strong correlation (r = 0.86) was observed between the degree of lipoprotein aggregation and the amount of cholesteryl esters accumulated. Removal of modified LDL aggregates by filtration through a 0.1 micron filter or gel filtration completely prevented the intracellular accumulation of cholesteryl esters. These findings indicate that LDL aggregates play an essential, if not the decisive, role in the intracellular accumulation of lipids in vitro.  相似文献   

3.
We have recently demonstrated that lipids, particularly cholesterol, covalently bound to apolipoprotein B (apoB) are a stable marker of low density lipoprotein (LDL) oxidation (Tertov et al. 1995). The present study is an attempt to assess the relationship between the degree of LDL oxidation, evaluated by the content of apoB-bound cholesterol and the ability of LDL to induce cholesterol accumulation in cultured human aortic intimal smooth muscle cells, i.e. LDL atherogenicity. Native LDL was oxidized in vitro by copper ions, 2,2-azobis-(2-aminopropane hydrochloride), or sodium hypochlorite. Minimum degree of LDL in vitro oxidation necessary to convert LDL into atherogenic one was accompanied by an increase of apoB-bound cholesterol to the level much higher than that usually observed in freshly isolated atherogenic LDL from human blood. Moreover, elimination of LDL aggregates from in vitro oxidized LDL preparations by gel filtration led to loss of its atherogenic properties. Thus, the ability to induce cholesterol accumulation in cells, i.e. the atherogenicity of in vitro oxidized LDL is a result of LDL aggregation but not oxidation. We also studied the relationship between LDL atherogenicity and apoB-bound cholesterol content in LDL freshly isolated from healthy subjects and normo- and hypercholesterolemic patients with coronary atherosclerosis. The ability of human LDL to induce cholesterol accumulation in aortic smooth muscle cells did not correlate with the degree of in vivo LDL oxidation (r = 0.12, n = 90). It is concluded that LDL atherogenicity does not depend on the degree of lipid peroxidation in LDL particle.  相似文献   

4.
During atherogenesis, the extracellular pH of atherosclerotic lesions decreases. Here, we examined the effect of low, but physiologically plausible pH on aggregation of modified LDL, one of the key processes in atherogenesis. LDL was treated with SMase, and aggregation of the SMase-treated LDL was followed at pH 5.5-7.5. The lower the pH, the more extensive was the aggregation of identically prelipolyzed LDL particles. At pH 5.5-6.0, the aggregates were much larger (size >1 μm) than those formed at neutral pH (100-200 nm). SMase treatment was found to lead to a dramatic decrease in α-helix and concomitant increase in β-sheet structures of apoB-100. Particle aggregation was caused by interactions between newly exposed segments of apoB-100. LDL-derived lipid microemulsions lacking apoB-100 failed to form large aggregates. SMase-induced LDL aggregation could be blocked by lowering the incubation temperature to 15°C, which also inhibited the changes in the conformation of apoB-100, by proteolytic degradation of apoB-100 after SMase-treatment, and by HDL particles. Taken together, sphingomyelin hydrolysis induces exposure of protease-sensitive sites of apoB-100, whose interactions govern subsequent particle aggregation. The supersized LDL aggregates may contribute to the retention of LDL lipids in acidic areas of atherosclerosis-susceptible sites in the arterial intima.  相似文献   

5.
We studied the effect of complexes of low-density lipoproteins (LDL) and different proteoglycan preparations from bovine aorta on LDL degradation and cholesteryl ester accumulation in mouse peritoneal macrophages. Native proteoglycan aggregate containing proteoglycan monomers, hyaluronic acid and link protein was isolated by associative extraction of aortic tissue, while proteoglycan monomer was obtained by dissociative isopycnic centrifugation of the native proteoglycan aggregate. In vitro proteoglycan aggregates were prepared by reaction of the proteoglycan monomer with exogenous hyaluronic acid. 125I-labeled LDL-proteoglycan complexes were formed in the presence of 30 mM Ca2+ and incubated with macrophages. At equivalent uronic acid levels in the proteoglycans the degradation of 125I-labeled LDL contained in the native proteoglycan aggregate complex was 3.7-7.5-fold greater than the degradation of the lipoprotein in the proteoglycan monomer complex. Degradation of 125I-LDL in the in vitro aggregate complex, while higher than that in the monomer complex, was markedly less than that in the native aggregate complex. The larger size and the greater complex-forming ability of the native proteoglycan aggregate might account for the greater capacity of the aggregate to promote LDL degradation in macrophages. The proteoglycan-stimulated degradation of LDL produced a marked increase in cholesteryl ester synthesis and content in macrophages. The LDL-proteoglycan complex was degraded with saturation kinetics, suggesting that these complexes are internalized through high-affinity receptors. Degradation was inhibited by the lysosomotropic agent, chloroquine. Acetyl-LDL, but not native LDL, competitively inhibited the degradation of the 125I-LDL component of the complex. Polyanionic compounds such as polyinosinic acid and fucoidin, while completely blocking the acetyl-LDL-stimulated cholesteryl ester formation, had no effect on the proteoglycan aggregate-stimulated cholesterol esterification. This suggests that LDL-proteoglycan complex and acetyl-LDL are not entering the cells through the same receptor pathway. These results demonstrate that the interaction of LDL with arterial wall proteoglycan aggregates results in marked cholesteryl ester accumulation in macrophages, a process likely to favor foam cell formation. A role for arterial proteoglycans in atherosclerosis is obvious.  相似文献   

6.
Plant cell aggregates have long been implicated in affecting cellular metabolism in suspension culture, yet the rigorous characterization of aggregate size as a process variable and its effect on bioprocess performance has not been demonstrated. Aggregate fractionation and analysis of biomass-associated product is commonly used to assess the effect of aggregation, but we establish that this method is flawed under certain conditions and does not necessarily agree with comprehensive studies of total culture performance. Leveraging recent advances to routinely measure aggregate size distributions, we developed a simple method to manipulate aggregate size and evaluate its effect on the culture as a whole, and found that Taxus suspension cultures with smaller aggregates produced significantly more paclitaxel than cultures with larger aggregates in two cell lines over a range of aggregate sizes, and where biomass accumulation was equivalent before elicitation with methyl jasmonate. Taxus cuspidata (T. cuspidata) P93AF cultures with mean aggregate sizes of 690 and 1,100 μm produced 22 and 11 mg/L paclitaxel, respectively, a twofold increase for smaller aggregates, and T. cuspidata P991 cultures with mean aggregate sizes of 400 and 840 μm produced 6 and 0.3 mg/L paclitaxel, respectively, an increase of 20-fold for smaller aggregates. These results demonstrate the importance of validating experiments aimed at a specific phenomenon with total process studies, and provide a basis for treating aggregate size as a targeted process variable for rational control strategies.  相似文献   

7.
Lipid droplets and vesicles can presumably be formed directly from lipoproteins in the extracellular space in atherosclerosis, but an in vitro demonstration of the phenomenon in the absence of cellular pathways has been lacking. Low density lipoproteins (LDL) are known to undergo self-aggregation after brief vortexing in vitro. In the present study, LDL aggregates were examined by electron microscopy, using new mordant techniques for lipid visualization, and by chemical analysis. Aggregation of LDL by vortexing is regularly accompanied by the formation of comparatively large lipid droplets (up to 600 nm diameter) and vesicles. Aggregates containing droplets and vesicles were formed after as little as 5 sec of vortexing, and LDL protein and cholesteryl ester were almost completely (95%) incorporated into aggregates after 4 min vortexing. Substantial fractions of phospholipid and unesterified cholesterol from the original LDL remained in solution even after 4 min vortexing, forming large multilamellar vesicles that did not adhere to the aggregated material. Spontaneous aggregates retrieved from LDL solutions after prolonged storage were also examined by electron microscopy, revealing similar lipid droplets and vesicles. The ultrastructural appearance of LDL aggregated in vitro is remarkably similar to the appearance of extracellular lipid deposits in atherosclerosis, lending credence to the hypothesis of direct extracellular formation of these deposits from lipoproteins.  相似文献   

8.
Proteoglycan aggregates from bovine articular cartilage have been visualized by electron microscopy of mixed proteoglycan-cytochrome c monolayers. The proteoglycan aggregates consist of proteoglycan subunits arising laterally at fairly regular intervals (20 to 30 nm) from the opposite sides of an elongated filamentous structure. The filamentous backbone in individual aggregates varies in length from 400 to 4000 nm. The individual proteoglycan subunits in the aggregate vary in length from 100 to 400 nm. However, there is no difference in the average size of the proteoglycan subunits associated with the largest or smallest aggregates. The sizes of the individual aggregates are determined mainly by the lengths of their filamentous backbones. The stoichiometry of binding of subunits to filament, calculated from the data reported here, is close to that for the binding of subunits to hyaluronic acid reported by others.  相似文献   

9.
The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.  相似文献   

10.
Mimetic peptides are promising therapeutic agents for atherosclerosis prevention. A 10-residue class G* peptide from apolipoprotein J (apoJ), namely, D-[113–122]apoJ, possesses anti-inflammatory and anti-atherogenic properties. This prompted us to determine its effect on the aggregation process of low-density lipoprotein (LDL) particles, an early event in the development of atherosclerosis. LDL particles with and without [113–122]apoJ peptide were incubated at 37 °C with sphingomyelinase (SMase) or were left to aggregate spontaneously at room temperature. The aggregation process was analyzed by size-exclusion chromatography (SEC), native gradient gel electrophoresis (GGE), absorbance at 405 nm, dynamic light scattering (DLS), and transmission electronic microscopy (TEM). In addition, circular dichroism was used to determine changes in the secondary structure of apoB, and SDS-PAGE was performed to assess apoB degradation. At an equimolar ratio of [113–122]apoJ peptide to apoB-100, [113–122]apoJ inhibited both SMase-induced or spontaneous LDL aggregation. All methods showed that [113–122]apoJ retarded the progression of SMase-induced LDL aggregation at long incubation times. No effect of [113–122]apoJ on apoB secondary structure was observed. Binding experiments showed that [113–122]apoJ presents low affinity for native LDL but binds readily to LDL during the first stages of aggregation. Laurdan fluorescence experiments showed that mild aggregation of LDL resulted in looser lipid packaging, which was partially prevented by D-[113–122]apoJ. These results demonstrate that [113–122]apoJ peptide prevents SMase-induced LDL aggregation at an equimolar ratio and opens the possibility for the use of this peptide as a therapeutic tool.  相似文献   

11.
Initiation of atherosclerosis is characterized by accumulation of aggregates of small lipid droplets and vesicles in the extracellular matrix of the arterial intima. The droplets and vesicles have features that suggest that they are formed from modified plasma-derived low density lipoprotein (LDL) particles. A variety of hydrolytic enzymes and prooxidative agents that could lead to extracellular assembly of LDL-derived droplets and vesicles are present in the arterial intima. In fact, in vitro studies have demonstrated that extensive oxidation of LDL and treatment of LDL with either proteolytic or lipolytic enzymes will induce LDL aggregation and fusion and treatment of LDL with cholesterol esterase will cause formation of vesicles. Fusion of LDL particles proceeds faster in vitro when they are bound to components of the extracellular matrix derived from the arterial intima, such as proteoglycans, and, depending on the type of modification, the strength of binding of modified LDL to the matrix components may either increase or decrease. In the present article, we discuss molecular mechanisms that provide clues as to how aggregated lipid droplets and vesicles may be derived from modified LDL particles. We also describe how these modified forms of LDL, by means of their trapping to the extracellular matrix, may lead to extracellular lipid accumulation in the arterial intima.  相似文献   

12.
Oxidized low density lipoprotein (LDL) has been found to exhibit numerous potentially atherogenic properties, including transformation of macrophages to foam cells. It is believed that high density lipoprotein (HDL) protects against atherosclerosis by removing excess cholesterol from cells of the artery wall, thereby retarding lipid accumulation by macrophages. In the present study, the relative rates of HDL-mediated cholesterol efflux were measured in murine resident peritoneal macrophages that had been loaded with acetylated LDL or oxidized LDL. Total cholesterol content of macrophages incubated for 24 h with either oxidized LDL or acetylated LDL was increased by 3-fold. However, there was no release of cholesterol to HDL from cells loaded with oxidized LDL under conditions in which cells loaded with acetylated LDL released about one-third of their total cholesterol to HDL. Even mild degrees of oxidation were associated with impairment of cholesterol efflux. Macrophages incubated with vortex-aggregated LDL also displayed impaired cholesterol efflux, but aggregation could not account for the entire effect of oxidized LDL. Resistance of apolipoprotein B (apoB) in oxidized LDL to lysosomal hydrolases and inactivation of hydrolases by aldehydes in oxidized LDL were also implicated. The subcellular distribution of cholesterol in oxidized LDL-loaded cells and acetylated LDL-loaded cells was investigated by density gradient fractionation, and this indicated that cholesterol derived from oxidized LDL accumulates within lysosomes. Thus impairment of cholesterol efflux in oxidized LDL-loaded macrophages appears to be due to lysosomal accumulation of oxidized LDL rather than to impaired transport of cholesterol from a cytosolic compartment to the plasma membrane.  相似文献   

13.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
The self-assembly of collagen molecules   总被引:2,自引:0,他引:2  
L Yuan  A Veis 《Biopolymers》1973,12(6):1437-1444
The aggregation of native acid-soluble collagen (N-ASC) and of pronase-treated acid soluble collagen (P-ASC) was examined in solution under conditions which varied from those of minimum collagen-collagen interaction to those leading to incipient fiber formation. Molecular weights and weight distributions were determined in the analytical ultracentrifuge using the Yphantis high speed sedimentation equilibrium and Aarchiblad approach-to-equilibrim techniques. The aggregation was pH and ionic strength dependent in each case. Under conditions of minimum aggregation (low pH, low ionic strength), N-ASC showed the presence of permant aggregates. At higher pH and ionic strength, a higher fraction of aggregate was formed but these were of the same charcter and molecular weight as the permanent aggregates. The aggregates were of a single molecular size, with a weight of 1.5 × 106 daltons, compared with a monomer collagen weight of 3.1 × 105 daltons. The P-ASC formed aggregates also but to a much lower extent and the maximum aggregate size corresponded to dimers in molecular weight. These data show the major importance of molecular end-regions in collagen aggregation to form native type fibers and, by virtue of the discrete size of the N-ASC aggregates, support the microfibrillar hypothesis for the assembly of collagen fibrills.  相似文献   

15.
Soluble aggregates critically influence the chemical and biological aspects of amyloid protein aggregation, but their population is difficult to measure, especially in vivo. We take an optical fiber-based fluorescence correlation spectroscopy (FCS) approach to characterize a solution of aggregating amyloid-beta molecules. We find that this technique can easily resolve aggregate particles of size 100 nm or greater in vitro, and the size distribution of these particles agrees well with that obtained by conventional FCS techniques. We propose fiber FCS as a tool for studying aggregation in vivo.  相似文献   

16.
《Biophysical journal》2023,122(1):197-214
Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates. To this end, we propose a kinetic theory for linear aggregation in coexisting phases, which accounts for the aggregate size distribution and the exchange of aggregates between inside and outside of condensates. The rheology of condensates is accounted in our model via aggregate mobilities that depend on aggregate size. We show that condensate rheology determines whether aggregates of all sizes or dominantly small aggregates are exchanged between condensate inside and outside on the timescale of aggregation. As a result, the ratio of aggregate numbers inside to outside of condensates differs significantly. Strikingly, we also find that weak variations in the rheological properties of condensates can lead to a switch-like change of the number of aggregates. These results suggest a possible physical mechanism for how living cells could control linear aggregation in a switch-like fashion through variations in condensate rheology.  相似文献   

17.
Soluble aggregates critically influence the chemical and biological aspects of amyloid protein aggregation, but their population is difficult to measure, especially in vivo. We take an optical fiber-based fluorescence correlation spectroscopy (FCS) approach to characterize a solution of aggregating amyloid-β molecules. We find that this technique can easily resolve aggregate particles of size 100 nm or greater in vitro, and the size distribution of these particles agrees well with that obtained by conventional FCS techniques. We propose fiber FCS as a tool for studying aggregation in vivo.  相似文献   

18.
Mei S  Gu H  Ward A  Yang X  Guo H  He K  Liu Z  Cao W 《The Journal of biological chemistry》2012,287(15):11761-11768
p38 MAPK has been strongly implicated in the development of atherosclerosis, but its role in cholesterol ester accumulation in macrophages and formation of foam cells, an early step in the development of atherosclerosis, has not been investigated. We addressed this issue and made some brand new observations. First, elevated intracellular cholesterol level induced by the exposure to LDL-activated p38 MAPK and activation of p38 MAPK with anisomycin increased the ratio of cholesterol esters over free cholesterol, whereas inhibition of p38 MAPK with SB203580 or siRNA reduced the LDL loading-induced intracellular accumulation of free cholesterol and cholesterol esters in macrophages. Second, exposure to LDL cholesterol inhibited autophagy in macrophages, and inhibition of autophagy with 3-methyladenine increased intracellular accumulation of cholesterol (free cholesterol and cholesterol esters), whereas activation of autophagy with rapamycin decreased intracellular accumulation of free cholesterol and cholesterol esters induced by the exposure to LDL cholesterol. Third, LDL cholesterol loading-induced inhibition of autophagy was prevented by blockade of p38 MAPK with SB203580 or siRNA. Neutral cholesterol ester hydrolase was co-localized with autophagosomes. Finally, LDL cholesterol loading and p38 activation suppressed expression of the key autophagy gene, ulk1, in macrophages. Together, our results provide brand new insight about cholesterol ester accumulation in macrophages and foam cell formation.  相似文献   

19.
Oxidative modifications render low density lipoprotein cytotoxic and enhance its propensity to aggregate and fuse into particles similar to those found in atherosclerotic lesions. We showed previously that aggregation of oxidized LDL (OxLDL) promotes the transformation of human macrophages into lipid-laden foam cells (Asmis, R., and J. Jelk. 2000. Large variations in human foam cell formation in individuals. A fully autologous in vitro assay based on the quantitative analysis of cellular neutral lipids. Atherosclerosis. 148: 243-253). Here, we tested the hypothesis that aggregation of OxLDL enhances its clearance by human macrophages and thus may protect macrophages from OxLDL-induced cytotoxicity. We found that increased aggregation of OxLDL correlated with decreased macrophage injury. Using 3H-labeled and Alexa546-labeled OxLDL, we found that aggregation enhanced OxLDL uptake and increased cholesteryl ester accumulation but did not alter free cholesterol levels in macrophages. Acetylated LDL was a potent competitor of aggregated oxidized LDL (AggOxLDL) uptake, suggesting that scavenger receptor A plays an important role in the clearance of AggOxLDL. Inhibitors of actin polymerization, cytochalasin B, cytochalasin D, and latrunculin A, also prevented AggOxLDL uptake and restored OxLDL-induced cytotoxicity. This suggests that OxLDL-induced macrophage injury does not require OxLDL uptake and may occur on the cell surface. Our data demonstrate that aggregation of cytotoxic OxLDL enhances its clearance by macrophages without damage to the cells, thus allowing macrophages to avoid OxLDL-induced cell injury.  相似文献   

20.
The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号