共查询到20条相似文献,搜索用时 0 毫秒
1.
Vieux-Rochas M Bouhali K Baudry S Fontaine A Coen L Levi G 《Birth defects research. Part B, Developmental and reproductive toxicology》2010,89(6):493-503
Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1–15 min) pulses of low doses of retinoic acid (RA: 0.25–2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6‐hr window (developmental stages NF15–NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA‐dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes. Birth Defects Res (Part B) 89:493–503, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
2.
Maxence Vieux‐Rochas Stefano Mantero Eglantine Heude Ottavia Barbieri Simonetta Astigiano Grard Couly Hiroki Kurihara Giovanni Levi Giorgio R. Merlo 《Genesis (New York, N.Y. : 2000)》2010,48(6):262-373
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin‐1 (Edn1)‐dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo‐mandibular identity. Here, to better analyze the spatio‐temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1‐dependent and ‐independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1→Dlx5/6→Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events. genesis 48:362–373, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
3.
4.
5.
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures. 相似文献
6.
7.
In this study we examined the role of cell-cell affinity in patterning the avian frontonasal mass-the facial prominence that forms the prenasal cartilage and premaxillary bone. Reconstituted cell pellets derived from undifferentiated, frontonasal mass mesenchyme were recombined with facial epithelium and grafted to host embryos to continue development. We determined that the cells reestablished a recognizable frontonasal mass pattern and were able to induce egg teeth in overlying ectoderm. Further analysis revealed there were region-specific differences in the cartilage patterns such that central recombinations were more likely to form a straight cartilage rod, whereas lateral mesenchyme pellets were more likely to form complex, branched cartilage patterns. The basis for the pattern differences was that central mesenchyme cells showed preferential clustering in the cartilage condensations in the center of the graft, whereas lateral cells were spread throughout as determined by dye labeling and quail chicken chimeras. The disruption of cell contacts temporarily delayed onset of gene expression but by 48 h both Msx2 and Dlx5 were expressed. Msx2, in particular, had very clear edges to the expression domains and often the pattern of expression correlated with type of cartilage morphology. Together, these data suggest that an important patterning mechanism in the face is the ability of mesenchymal cells to sort out according to position and that Msx2 may help repress chondrogenic potential in the lateral frontonasal mass. 相似文献
8.
9.
Natalia Stec Katja Doerfel Kelly Hills-Muckey Victoria M. Ettorre Sevinc Ercan Wolfgang Keil Christopher M. Hammell 《Current biology : CB》2021,31(4):809-826.e6
- Download : Download high-res image (133KB)
- Download : Download full-size image
10.
11.
12.
13.
Insun Song Kabsun Kim Jung Ha Kim Young-Kyoung Lee Hyun-Jung Jung Hae-Ok Byun Gyesoon Yoon Nacksung Kim 《BMB reports》2014,47(8):463-468
Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2. [BMB Reports 2014; 47(8): 463-468] 相似文献
14.
15.
转录因子是一种多功能蛋白,在感知应激信号、应答相应应激基因表达及传导应激信号中起着关键作用。干旱是影响植物生长发育的主要非生物胁迫之一。为了适应干旱环境,植物发展了复杂的分子机制,其中转录因子可同时控制多种途径调控干旱应激,是操纵调控和应激响应途径的有力工具。近年来,越来越多的植物转录因子的功能被阐明,了解转录因子在干旱应激的功能,对植物的工程抗旱有重要的实践意义。综述转录因子在植物干旱应激中的功能研究进展,以期为今后转录因子的研究和利用提供理论依据,培育具有较强抗旱能力的植物。 相似文献
16.
盛德乔 《国外医学:分子生物学分册》2011,(5):433-436
目的分析转录因子Deafl的功能结构域并预测其功能。方法利用现有的数据库和软件对Deafl的转录因子结构域,核定位信号及和输出信号进行分析和预测。结果Deafl含有一个保守的SAND结构域及一个能介导蛋白质一蛋白质相互作用的MYND结构域;有核定位信号和核输出信号;在其N端还有一个富含丙氨酸结构域。结论Deafl除有典型转录因子必需的功能结构域之外,可能还有不止一个结构域能介导与其它蛋白质因子的相互作用,这对Deafl调控外周组织抗原表达至关重要。 相似文献
17.
Retinoic acid signaling plays important roles in establishing normal patterning and cellular differentiation during embryonic development. In this study, we show that single administration of retinoic acid at embryonic day 8.5 causes homeotic transformation of the lower jaw into upper jaw-like structures. This homeosis was preceded by downregulation of Fgf8 and Sprouty expression in the proximal domain of the first pharyngeal arch. Downregulation of mesenchymal genes such as Dlx5, Hand2, Tbx1 and Pitx2 was also observed. The oropharynx in retinoic acid-treated embryos was severely constricted. Consistent with this observation, Patched expression in the arch endoderm and mesenchyme was downregulated. Thus, retinoic acid affects the expression of subsets of epithelial and mesenchymal genes, possibly disrupting the regional identity of the pharyngeal arch. 相似文献
19.
20.
Li H Marijanovic I Kronenberg MS Erceg I Stover ML Velonis D Mina M Heinrich JG Harris SE Upholt WB Kalajzic I Lichtler AC 《Developmental biology》2008,316(2):458-470
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function. 相似文献