首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mammalian body is composed of more than 200 different types of cells. The purification of a certain cell type from tissues/organs enables a wide variety of studies. One popular cell purification method is immunological isolation, using antibodies against specific cell surface antigens. However, this is not a general‐purpose method, since suitable antigens have not been found in certain cell types, including embryonic gonadal somatic cells and Sertoli cells. To address this issue, we established a knock‐in mouse line, named R26 KI, designed to express the human cell surface antigen hCD271 through Cre/loxP‐mediated recombination. First, we used the R26 Kl mouse line to purify embryonic gonadal somatic cells. Gonadal somatic cells were purified from the R26 KI; Nr5a1‐Cre‐transgenic (tg) embryos almost equally as efficiently as from Nr5a1‐hCD271‐tg embryos. Second, we used the R26 KI mouse line to purify Sertoli cells successfully from R26 KI; Amh‐Cre‐tg testes. In summary, we propose that the R26 KI mouse line is a powerful tool for the purification of various cell types. genesis 53:387–393, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Textpresso Site Specific Recombinases ( http://ssrc.genetics.uga.edu/ ) is a text‐mining web server for searching a database of more than 9,000 full‐text publications. The papers and abstracts in this database represent a wide range of topics related to site‐specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR‐activated transgenes/knockins. The database also includes reports describing SSR‐based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR‐based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text‐mining resource available for the literature describing the biology and technical applications of SSRs. genesis 47:842–846, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
P0‐Cre and Wnt1‐Cre mouse lines have been widely used in combination with loxP‐flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1‐Cre has been regarded as the gold standard and there have been concerns about the specificity of P0‐Cre because it is not clear about the timing and spatial distribution of the P0‐Cre transgene in labeling NC cells at early embryonic stages. We re‐visited P0‐Cre and Wnt1‐Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26‐lacZ Cre reporter responded to Cre activity more reliably than CAAG‐lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0‐Cre and reporter (lacZ and RFP ) activity in P0‐Cre/R26‐lacZ and P0‐Cre/R26‐RFP embryos was detected in the cranial NC and notochord regions in E8.0–9.5 (4–19 somites) embryos. P0‐Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0‐Cre and Wnt1‐Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1‐Cre and in the hindbrain of P0‐Cre embryos. The difference between P0‐Cre and Wnt1‐Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre‐driven genetic modifications.  相似文献   

5.
6.
7.
IL‐7 is a cytokine that is required for T‐cell development and homeostasis as well as for lymph node organogenesis. Despite the importance of IL‐7 in the immune system and its potential therapeutic relevance, questions remain regarding the sites of IL‐7 synthesis, specific cell types involved and molecular mechanisms regulating IL‐7 expression. To address these issues, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines in which IL‐7 regulatory elements drive expression of either Cre recombinase or a human CD25 (hCD25) cell surface reporter molecule. Expression of the IL‐7.hCD25 BAC transgene, detected by reactivity with anti‐hCD25 antibody, mimicked endogenous IL‐7 expression. Fetal and adult tissues from crosses between IL‐7.Cre transgenic mice and Rosa26R or R26‐EYFP reporters demonstrated X‐gal or YFP staining in tissues known to express endogenous IL‐7 at some stage during development. These transgenic lines provide novel genetic tools to identify IL‐7 producing cells in various tissues and to manipulate gene expression selectively in IL‐7 expressing cells. genesis 47:281–287, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Summary: Nkx2‐5, one of the earliest cardiac‐specific markers in vertebrate embryos, was used as a genetic locus to knock in the Cre recombinase gene by homologous recombination. Offspring resulting from heterozygous Nkx2‐5/Cre mice mated to ROSA26 (R26R) reporter mice provided a model system for following Nkx2‐5 gene activity by β‐galactosidase (β‐gal) activity. β‐gal activity was initially observed in the early cardiac crescent, cardiomyocytes of the looping heart tube, and in the epithelium of the first pharyngeal arch. In later stage embryos (10.5–13.5 days postcoitum, dpc), β‐gal activity was observed in the stomach and spleen, the dorsum of the tongue, and in the condensing primordium of the tooth. The Nkx2‐5/Cre mouse model should provide a useful genetic resource to elucidate the role of loxP manipulated genetic targets in cardiogenesis and other developmental processes. genesis 31:176–180, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
目的探讨他莫昔芬诱导的hGfapCreERT2转基因鼠小脑中表达Cre重组酶的细胞类型。方法 hGfapCre-ERT2/Rosa26R转基因小鼠在胚胎晚期和出生早期用他莫昔芬诱导Cre重组酶表达,对小脑组织切片行X-gal染色,然后用细胞种类特异性抗体进行免疫组织化学染色,并和X-gal染色双重标记。结果在出生后第7天(P7)、第14天(P14)和第60天(P60),X-gal阳性染色和胶质细胞抗体Blbp阳性染色共标记,和神经元抗体Neun、浦肯野细胞抗体Calbindin及少突胶质细胞前体细胞抗体NG2不共标。结论自胚胎晚期第17.5天(E17.5)后用他莫昔芬诱导hGfapCreERT2转基因鼠,发现Cre重组酶特异性在小脑星形胶质细胞中表达,不在神经元、浦肯野细胞、少突胶质细胞前体细胞中表达。  相似文献   

10.
Retroviral integrase is an enzyme responsible for the integration of retroviruses. A single mutation in the integrase core domain can severely compromise its integration ability, leading to the accumulation of circular retroviral cDNA in the nuclei of infected cells. We therefore attempted to use those cDNA as substrates for Cre recombinase to perform a recombinase‐mediated cassette exchange (RMCE), thereby targeting retroviral vectors to a predetermined site. An expression unit containing a promoter, an ATG codon and marker genes (hygromycin resistance gene and red fluorescent protein gene) flanked by wild‐type and mutant loxP sites was first introduced into cellular chromosome to build founder cell lines. We then constructed another plasmid for the production of integrase‐defective retroviral vectors (IDRV), which contains an ATG‐deficient neomycin resistance gene and green fluorescent protein gene, flanked by a compatible pair of loxPs. After providing founder cells with Cre and infecting with IDRV later, effective RMCE occurred, resulting in the appearance of G418‐resistant colonies and a change in the color of fluorescence from red to green. Southern blot and PCR analyses on selected clones further confirmed site‐specific recombination. The successful substitution of the original viral integration machinery with a non‐viral mechanism could expand the application of retroviral vectors. Biotechnol. Bioeng. 2010;107:717–729. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
基于Cre重组酶体系的鸡卵清蛋白基因打靶载体的构建   总被引:1,自引:0,他引:1  
张传生  杜立新 《动物学报》2005,51(4):685-690
利用胚胎干细胞基因打靶技术制备转基因鸡是研制鸡输卵管反应器的最佳技术路线。为建立基于Cre/loxp系统的鸡卵清蛋白基因(Ovalbumingene,OV)位点的双交换打靶载体系统,本研究克隆了鸡的OV基因7.8kb片段,并与克隆的内部核糖体进入位点(IRES)、人工合成的含有Cre重组酶识别位点变异体交换盒m2/loxp71EGFPloxp66,一起构建了含有Hsvtk负筛选标记的针对鸡卵清蛋白基因位点的敲入型共表达基因打靶载体pSSCm2/71EGFP66IRESOV7.8;以猪β干扰素基因(βInterferon,IFNβ)为目的基因构建了穿梭载体pMDm2/66MCSIFNMCSLoxp71,经过限制酶酶切及部分测序鉴定,所构建载体结构正确。进一步将它们共转化组成性表达Cre的细菌BM25.8,验证了loxp突变位点对重组反应的有效性  相似文献   

12.
13.
14.
15.
Smad7 can be induced by various transforming growth factor‐β superfamily ligands and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. Previous analyses have demonstrated that although Smad7 is widely expressed, it is predominantly found in the vascular endothelium. Because of the restricted spatiotemporal reporter expression driven via a novel 4.3 kb Smad7 promoter in endocardial cells overlying the hearts atrioventricular (AV) cushions; we hypothesized that a transgenic Cre line would prove useful for the analysis of endocardial cushion and valve formation. Here we describe a mouse line, Smad7Cre, where Cre is robustly expressed within both cardiac outflow and AV endocardial cushions. Additionally, as endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme, we crossed the Smad7Cre mice to the ROSA26eGFP‐DTA diphtheria toxin A‐expressing mice in order to genetically ablate Smad7Cre expressing cells. Ablation of Smad7Cre cells resulted in embryonic lethality by E11.5 and largely acellular endocardial cushions. genesis 47:469–475, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Cre/LoxP‐mediated recombination allows for conditional gene activation or inactivation. When combined with an independent lineage‐tracing reporter allele, this technique traces the lineage of presumptive genetically modified Cre‐expressing cells. Several studies have suggested that floxed alleles have differential sensitivities to Cre‐mediated recombination, which raises concerns regarding utilization of Cre‐reporters to monitor recombination of other floxed loci of interest. Here, we directly investigate the recombination correlation, at cellular resolution, between several floxed alleles induced by Cre‐expressing mouse lines. The recombination correlation between different reporter alleles varied greatly in otherwise genetically identical cell types. The chromosomal location of floxed alleles, distance between LoxP sites, sequences flanking the LoxP sites, and the level of Cre activity per cell all likely contribute to observed variations in recombination correlation. These findings directly demonstrate that, due to non‐parallel recombination events, commonly available Cre reporter mice cannot be reliably utilized, in all cases, to trace cells that have DNA recombination in independent‐target floxed alleles, and that careful validation of recombination correlations are required for proper interpretation of studies designed to trace the lineage of genetically modified populations, especially in mosaic situations. genesis 51:436–442. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
张宁宁  王长楠  倪鑫 《生理学报》2020,72(2):148-156
肾上腺是人体重要的内分泌器官。由于缺乏肾上腺皮质束状带特异性表达Cre酶的工具鼠,目前对肾上腺皮质束状带细胞中特异表达基因的功能缺乏深入的解析。CYP11B1基因编码类固醇11β-羟化酶,该酶是糖皮质激素合成的关键酶,在肾上腺皮质束状带中特异性表达。本研究旨在利用CYP11B1基因在束状带特异性表达的特点,构建在肾上腺皮质束状带中特异性表达Cre重组酶的转基因动物。采用CRISPR/Cas9技术在CYP11B1基因终止密码子位点定点敲入2A-GfpCre表达框,获得CYP11B1-2A-GfpCre同源重组载体,进而构建CYP11B1Cre小鼠,并通过mTmG和LacZ染色确定Cre酶主要表达在小鼠肾上腺皮质束状带。在此基础上,本研究还用该工具鼠与胱硫醚-γ-裂解酶(cystathionineγ-lyase, CTH)条件性敲除鼠交配,获得了肾上腺皮质束状带CTH特异性敲除的小鼠,并证实了该动物肾上腺皮质束状带中CTH表达缺失。以上结果充分说明肾上腺皮质束状带特异性表达Cre重组酶小鼠构建成功。该工具鼠的成功构建,为深入研究肾上腺皮质束状带相关功能提供了有力工具。  相似文献   

20.
A novel knock‐in mouse that expresses codon‐improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatiotemporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2‐iCre mice were bred with ROSA26‐lacZ and Ai9‐RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2‐iCre mice will serve as a novel line for conditionally ablating genes in Esr2‐expressing tissues, identifying novel Esr2‐expressing cells, and differentiating the functions of ESR2 and ESR1. genesis 54:38–52, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号