首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracts were prepared from meadow clover harvested at the stages of blossoming and budding. The major biological activity of such extracts is represented by flavonoid compounds. The influence of extracts on the proliferation of peripheral blood mononuclear cells obtained from healthy donors and of inbred mouse splenocytes in vitro was analyzed. Both preparations stimulated cellular proliferation. The lever of stimulating activity correlated with the stage-dependent concentration of flavonoids.  相似文献   

2.
Initiation of polyoma virus DNA replication is dependent on the activity of the early protein affected by the tsa mutations (large-T antigen). An in vitro DNA synthesizing system blocked at the initiation stage was designed by preparing nuclei from cells shifted to high temperature after infection with a polyoma tsa mutant. Addition to these nuclei of extracts from wild type virus-infected cells resulted in a limited, but reproducible stimulation of deoxynucleoside monophosphate incorporation. At least for a significant part, this stimulation was shown to correspond to an increased synthesis of molecules identified as polyoma replicative intermediates by their sedimentation coefficient and endonuclease Hpa II cleavage pattern. The non-random distribution of label observed among restriction fragments was that expected from an initiation event occuring at the physiological origin. This activity was reduced to background level in extracts from tsa-infected cells shifted to high temperature and was specifically inhibited by addition of Fab fragments from anti-polyoma virus T antigen immunoglobulins.  相似文献   

3.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

4.
The gene B protein (gpB) of bacteriophage phi X174 is required for prohead assembly and is removed from prohead during phage maturation. Protease activity was observed in isolated prohead which specifically cleaved gpB. Cleavage of gpB produced two fragments that had apparent molecular weights of 12,300 and 3,700 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal sequencing of the fragments confirmed that they resulted from the cleavage of gpB and identified the cleavage site as an Arg-Arg at amino acids 76 to 77 of the 120-amino-acid protein. gpB-specific protease activity was observed in both phi X174-infected and uninfected Escherichia coli extracts. This protease activity was localized to the outer-membrane fraction of uninfected cells. Protease activities present in the outer membrane and in isolated prohead produced identical fragments and had the same protease inhibition profile. The gpB-specific activity in uninfected cells was induced by growth at 42 degrees C and was inhibited by the protease inhibitors, 1,10-phenanthroline, EDTA, and N-ethylmaleimide.  相似文献   

5.
J S Liu  S R Kuo  X Yin  T A Beerman  T Melendy 《Biochemistry》2001,40(48):14661-14668
Treatment of cells with the enediyne C-1027 is highly efficient at inducing single- and double-strand DNA breaks. This agent is highly cytotoxic when used at picomolar levels over a period of days. For this study, C-1027 has been used at higher levels for a much shorter time period to look at early cellular responses to DNA strand breaks. Extracts from cells treated with C-1027 for as little as 2 h are deficient in SV40 DNA replication activity. Treatment with low levels of C-1027 (1-3 nM) does not result in the presence of a replication inhibitor in cell extracts, but they are deficient in replication protein A (RPA) function. Extracts from cells treated with high levels of C-1027 (10 nM) do show the presence of a trans-acting inhibitor of DNA replication. The deficiency in RPA in extracts from cells treated with low levels of C-1027 can be fully complemented by the addition of exogenous RPA, and may be due to a C-1027-induced decrease in the extractability of RPA. This decrease in the extractability of RPA correlates with the appearance of many extraction-resistant intranuclear RPA foci. The trans-acting inhibitor of DNA replication induced by treatment of cells with high levels of C-1027 (10 nM) is DNA-dependent protein kinase (DNA-PK). DNA-PK is activated by the presence of DNA fragments induced by C-1027 treatment, and can be abrogated by removal of the DNA fragments. Although it is activated by DNA damage and phosphorylates RPA, DNA-PK is not required for either RPA focalization or loss of RPA replication activity.  相似文献   

6.
Recruitment of DNA polymerases onto replication origins is a crucial step in the assembly of eukaryotic replication machinery. A previous study in budding yeast suggests that Dpb11 controls the recruitment of DNA polymerases alpha and epsilon onto the origins. Sld2 is an essential replication protein that interacts with Dpb11, but no metazoan homolog has yet been identified. We isolated Xenopus RecQ4 as a candidate Sld2 homolog. RecQ4 is a member of the metazoan RecQ helicase family, and its N-terminal region shows sequence similarity with Sld2. In Xenopus egg extracts, RecQ4 is essential for the initiation of DNA replication, in particular for chromatin binding of DNA polymerase alpha. An N-terminal fragment of RecQ4 devoid of the helicase domain could rescue the replication activity of RecQ4-depleted extracts, and antibody against the fragment inhibited DNA replication and chromatin binding of the polymerase. Further, N-terminal fragments of RecQ4 physically interacted with Cut5, a Xenopus homolog of Dpb11, and their ability to bind to Cut5 closely correlated with their ability to rescue the replication activity of the depleted extracts. Our data suggest that RecQ4 performs an essential role in the assembly of replication machinery through interaction with Cut5 in vertebrates.  相似文献   

7.
The occurrence of a RecA-like activity similar to the one detected in the fibroblast cell line GM1492 derived from a patient suffering from the autosomal recessive disease Bloom's syndrome has been investigated in cell extracts of different origin. The formation of D-loop containing joint molecules from phi X174 RFI DNA and fragments of phi X174 single-stranded DNA by partially purified extracts was measured by a filter binding assay. The RecA-like activity, dependent on ATP and Mg2+, was detected at an elevated level only in the human and rodent cell lines, GM1492 and CHO respectively. The level of activity in DNA-cellulose-purified cell extracts from these cell lines was 4-7-fold higher compared to normal human fibroblasts. Low levels of activity were also detected in extracts from two additional Bloom's syndrome fibroblast cell lines, Fanconi's anemia fibroblasts, virus- (Epstein-Barr virus, Simian virus 40) transformed human cells and human placenta. Cell extracts from rat testis, spleen and calf thymus were also of low activity.  相似文献   

8.
The outer kinetochore binds microtubules to control chromosome movement. Outer kinetochore assembly is restricted to mitosis, whereas the inner kinetochore remains tethered to centromeres throughout the cell cycle. The cues that regulate this transient assembly are unknown. We find that inhibition of Aurora B kinase significantly reduces outer kinetochore assembly in Xenopus laevis and human tissue culture cells, frog egg extracts, and budding yeast. In X. leavis M phase extracts, preassembled kinetochores disassemble after inhibiting Aurora B activity with either drugs or antibodies. Kinetochore disassembly, induced by Aurora B inhibition, is rescued by restraining protein phosphatase 1 (PP1) activity. PP1 is necessary for kinetochores to disassemble at the exit from M phase, and purified enzyme is sufficient to cause disassembly on isolated mitotic nuclei. These data demonstrate that Aurora B activity is required for kinetochore maintenance and that PP1 is necessary and sufficient to disassemble kinetochores. We suggest that Aurora B and PP1 coordinate cell cycle-dependent changes in kinetochore assembly though phosphorylation of kinetochore substrates.  相似文献   

9.
10.
This report describes the purification of an endonuclease from extracts of adenovirus-type-2-infected KB cells. Endonuclease activity can also be detected in extracts of uninfected KB cells and the enzyme activities from extracts of uninfected and adenovirus-infected cells are very similar, if not identical. The enzyme has its maximal activity at pH 4.0. The enzyme found in uninfected and adenovirus-infectedcells is, however, strikingly different from an endonuclease isolated from calf serum. Hence, the endonuclease described is probably not a contaminant derived from the medium in which the KB cells were propagated. The endonuclease in crude extracts from uninfected or adenovirus-infected KB cells can be activated or its activity enhanced by treatment of the extracts with proteolytic enzymes, like pronase or trypsin. Evidence has been presented suggesting that this activation is due to proteolytic cleavage of an inhibitor present in crude extracts of uninfected and adenovirus-type-2-infected KB cells. A second endonuclease has been found in extracts of infected and uninfected cells with optimal activity at pH 7.2 and this endonuclease can be separated from the one with a pH optimum at 4.0.  相似文献   

11.
XMAP215 belongs to a family of proteins involved in the regulation of microtubule dynamics. In this study we analyze the function of different parts of XMAP215 in vivo and in Xenopus egg extracts. XMAP215 has been divided into three fragments, FrN, FrM and FrC (for N-terminal, middle and C-terminal, respectively). FrN co-localizes with microtubules in egg extracts but not in cells, FrC co- localizes with microtubules and centrosomes both in egg extracts and in cells, while FrM does not co- localize with either centrosomes or microtubules. In Xenopus egg extracts, FrN stimulates microtubule growth at plus-ends by inhibiting catastrophes, while FrM has no effect, and FrC suppresses microtubule growth by promoting catastrophes. Our results suggest that XMAP215 is targeted to centrosomes and microtubules mainly through its C-terminal domain, while the evolutionarily conserved N-terminal domain contains its microtubule-stabilizing activity.  相似文献   

12.
Two different DNA fragments encoding ornithine carbamoyltransferase (OCTase) were cloned from Pseudomonas syringae pv. phaseolicola NPS3121. These fragments did not cross-hybridize and encoded OCTases which differed with respect to their sensitivity to purified phaseolotoxin, an OCTase inhibitor produced by this phytopathogenic bacterium. Recombinant plasmids carrying these DNA fragments complemented OCTase-deficient strains of Escherichia coli and Pseudomonas aeruginosa. Extracts of the complemented E. coli strain contained OCTase enzyme activities with similar degrees of sensitivity to purified phaseolotoxin as extracts of P.s.phaseolicola grown at either 20 or 30°C. The OCTase activity detectable in extracts of P.s.phaseolicola grown at 20°C is insensitive to phaseolotoxin while that detectable in extracts of cells grown at 30°C is sensitive to the toxin. E.coli HB101 harboring recombinant plasmids carrying the gene(s) encoding the phaseolotoxin-insensitive enzyme activity exhibited resistance to purified phaseolotoxin. The results of Tn5 mutagenesis and Southern blotting and the pattern of complementation of OCTase-deficient and Tox- mutant strains suggest that the gene(s) encoding the phaseolotoxin-insensitive OCTase is part of a gene cluster involved in phaseolotoxin production.  相似文献   

13.
The process of angiogenesis has been well documented, but little is known about the biology of lymphatic endothelial cells and the molecular mechanisms controlling lymphangiogenesis. The homeobox gene Prox1 is expressed in a subpopulation of endothelial cells that, after budding from veins, gives rise to the mammalian lymphatic system. In Prox1(-)(/-) embryos, this budding becomes arrested at around embryonic day (E)11.5, resulting in embryos without lymphatic vasculature. Unlike the endothelial cells that bud off in E11.5 wild-type embryos, those of Prox1-null embryos did not co-express any lymphatic markers such as VEGFR-3, LYVE-1 or SLC. Instead, the mutant cells appeared to have a blood vascular phenotype, as determined by their expression of laminin and CD34. These results suggest that Prox1 activity is required for both maintenance of the budding of the venous endothelial cells and differentiation toward the lymphatic phenotype. On the basis of our findings, we propose that a blood vascular phenotype is the default fate of budding embryonic venous endothelial cells; upon expression of Prox1, these budding cells adopt a lymphatic vasculature phenotype.  相似文献   

14.
A 26-kilobase BamHI restriction endonuclease DNA fragment was cloned from Pseudomonas pickettii PKO1, a strain isolated from a soil microcosm that had been amended with benzene, toluene, and xylene. This DNA fragment, cloned into vector plasmid pRO1727 and designated pRO1957, allowed Pseudomonas aeruginosa PAO1c to grow on phenol as the sole source of carbon. Physical and functional restriction endonuclease maps have been derived for the cloned DNA fragment. Two DNA fragments carried in trans and derived from subclones of pRO1957 show phenol hydroxylase activity in cell extracts of P. aeruginosa. Deletion and subcloning analyses of these fragments indicated that the gene encoding phenol hydroxylase is positively regulated. Phenol and m-cresol were shown to be inducers of the enzyme. o-Cresol and p-cresol did not induce enzymatic activity but could be metabolized by cells that had been previously exposed to phenol or m-cresol; moreover, the enzyme exhibited a rather broad substrate specificity and was sensitive to thiol-inhibiting reagents. A novel polypeptide with an estimated molecular mass of 80,000 daltons was detected in extracts of phenol-induced cells of P. aeruginosa carrying plasmid pRO1959.  相似文献   

15.
Despite numerous advances in the identification of the molecular machinery for clathrin-mediated budding at the plasma membrane, the mechanistic details of this process remain incomplete. Moreover, relatively little is known regarding the regulation of clathrin-mediated budding at other membrane systems. To address these issues, we have utilized the powerful new approach of subcellular proteomics to identify novel proteins present on highly enriched clathrin-coated vesicles (CCVs). Among the ten novel proteins identified is the rat homologue of a predicted gene product from human, mouse, and Drosophila genomics projects, which we named enthoprotin. Enthoprotin is highly enriched on CCVs isolated from rat brain and liver extracts. In cells, enthoprotin demonstrates a punctate staining pattern that is concentrated in a perinuclear compartment where it colocalizes with clathrin and the clathrin adaptor protein (AP)1. Enthoprotin interacts with the clathrin adaptors AP1 and with Golgi-localized, gamma-ear-containing, Arf-binding protein 2. Through its COOH-terminal domain, enthoprotin binds to the terminal domain of the clathrin heavy chain and stimulates clathrin assembly. These data suggest a role for enthoprotin in clathrin-mediated budding on internal membranes. Our study reveals the utility of proteomics in the identification of novel vesicle trafficking proteins.  相似文献   

16.
In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.  相似文献   

17.
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine–pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination.  相似文献   

18.
p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.  相似文献   

19.
Summary Relaxin is a member of the insulin family of proteins. It is produced principally in ovarian cells by processing of its larger precursor, prorelaxin. The enzymes responsible for conversion of prorelaxin to the mature hormone have not yet been elucidated. A rapid and convenient test has been developed to detect prorelaxin-processing enzymes in porcine ovary extracts. Unmodified peptide substrates, which represent the two prorelaxin-processing sites, were chemically synthesised and nanomolar amounts of these substrates were incubated in solution with enzyme preparations. The resultant fragments were resolved using high performance liquid chromatography or capillary electrophoresis and identified by their retention times compared with synthetic standards. This test has been successfully used to identify and characterise a candidate prorelaxin-processing enzyme from chromatographically fractionated porcine ovary extracts. The enzyme was found to be a serine protease with preference for cleavage after tetrabasic sequences and with optimal activity at pH 5.5–6.5.  相似文献   

20.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号