首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Staphylococcus aureus, fhuCBG encodes an ATP-binding cassette (ABC) transporter that is required for the transport of iron(III)-hydroxamates; mutation of either fhuB or fhuG eliminates transport. In this paper, we describe construction and characterization of an S. aureus fhuCBG deletion strain. The delta fhuCBG::ermC mutation not only resulted in a strain that was incapable of growth on iron(III)-hydroxamates as a sole source of iron but also resulted in a strain which had a profound growth defect in iron-restricted laboratory media. The growth defect was not a result of the inability to transport iron(III)-hydroxamates since S. aureus fhuG::Tn917 and S. aureus fhuD1::Km fhuD2::Tet mutants, which are also unable to transport iron(III)-hydroxamates, do not have similar iron-restricted growth defects. Complementation experiments demonstrated that the growth defect of the delta fhuCBG::ermC mutant was the result of the inability to express FhuC and that this was the result of an inability to transport iron complexed to the S. aureus siderophore staphylobactin. Transport of iron(III)-staphylobactin is dependent upon SirA (binding protein), SirB (permease), and SirC (permease). S. aureus expressing FhuC with a Walker A K42N mutation could not utilize iron(III)-hydroxamates or iron(III)-staphylobactin as a sole source of iron, supporting the conclusion that FhuC, as expected, functions with FhuB, FhuG, and FhuD1 or FhuD2 to transport iron(III)-hydroxamates and is the "genetically unlinked" ABC-ATPase that functions with SirA, SirB, and SirC to transport iron(III)-staphylobactin. Finally, we demonstrated that the delta fhuCBG::ermC strain had decreased virulence in a murine kidney abscess model.  相似文献   

2.
3.
The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin and salmycin. Cross-inhibition of the structurally different ferric hydroxamates to both antibiotics can be explained by the similar iron coordination centers of the four compounds. [(55)Fe(3+)]ferrichrome and [(55)Fe(3+)]ferrioxamine B were taken up by the same transport system into S. pneumoniae. Mutants in the adjacent fhuD, fhuB, and fhuG genes were transport inactive and resistant to the antibiotics. Albomycin, ferrichrome, ferrioxamine B, and salmycin bound to the isolated FhuD protein and prevented degradation by proteinase K. The fhu locus consisting of the fhuD, fhuB, fhuG, and fhuC genes determines a predicted ABC transporter composed of the FhuD binding lipoprotein, the FhuB and FhuG transport proteins, and the FhuC ATPase. It is concluded that active transport of albomycin mediates the high antibiotic efficacy in S. pneumoniae.  相似文献   

4.
Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us to examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.  相似文献   

5.
The fhuD2 gene encodes a lipoprotein that has previously been shown to be important for the utilization of iron(III)-hydroxamates by Staphylococcus aureus. We have studied the function of the FhuD2 protein in greater detail, and demonstrate here that the protein binds several iron(III)-hydroxamates. Mutagenesis of FhuD2 identified several residues that were important for the ability of the protein to function in iron(III)-hydroxamate transport. Several residues, notably Tyr-191, Trp-197, and Glu-202, were found to be critical for ligand binding. Moreover, mutation of two highly conserved glutamate residues, Glu-97 and Glu-231, had no affect on ligand binding, but did impair iron(III)-hydroxamate transport. Interestingly, the transport defect was not equivalent for all iron(III)-hydroxamates. We modeled FhuD2 against the high resolution structures of Escherichia coli FhuD and BtuF, two structurally related proteins, and showed that the three proteins share a similar overall structure. FhuD2 Glu-97 and Glu-231 were positioned on the surface of the N and C domains, respectively. Characterization of E97A, E231A, or E97A/E231A mutants suggests that these residues, along with the ligand itself, play a cumulative role in recognition by the ABC transporter FhuBGC2. In addition, small angle x-ray scattering was used to demonstrate that, in solution, FhuD2 does not undergo a detectable change in conformation upon binding iron(III)-hydroxamates. Therefore, the mechanism of binding and transport of ligands for binding proteins within this family is significantly different from that of other well studied binding protein families, such as that represented by maltose-binding protein.  相似文献   

6.
The nucleotide sequence for a 1,900-base-pair region of the Escherichia coli chromosome that includes the genes fhuC and fhuD was determined. Within this sequence are two open reading frames: nucleotides 127 to 921 and nucleotides 924 to 1811. These coding regions specify a FhuC protein with an Mr of 28,423 and a mature FhuD protein with an Mr of 29,610. The deduced amino acid sequence of FhuC shows extensive homology with those of components of some bacterial transport systems which are peripheral proteins of the cytoplasmic membrane. Because the FhuD protein contains a typical signal sequence of 30 amino acids at the amino terminus and displays characteristics of a soluble protein, it may be exported into the periplasm.  相似文献   

7.
For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of approximately 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.  相似文献   

8.
Uptake of iron complexes into the Gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In Gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long -helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.  相似文献   

9.
10.
11.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

12.
The fec region of the Escherichia coli chromosome determines a citrate-dependent iron(III) transport system. The nucleotide sequence of fec revealed five genes, fecABCDE, which are transcribed from fecA to fecE. The fecA gene encodes a previously described outer membrane receptor protein. The fecB gene product is formed as a precursor protein with a signal peptide of 21 amino acids; the mature form, with a molecular weight of 30,815, was previously found in the periplasm. The fecB genes of E. coli B and E. coli K-12 differed in 3 nucleotides, of which 2 gave rise to conservative amino acid exchanges. The fecC and fecD genes were found to encode very hydrophobic polypeptides with molecular weights of 35,367 and 34,148, respectively, both of which are localized in the cytoplasmic membrane. The fecE product was a rather hydrophilic but cytoplasmic membrane-bound protein of Mr 28,189 and contained regions of extensive homology to ATP-binding proteins. The number, structural characteristics, and locations of the FecBCDE proteins were typical for a periplasmic-binding-protein-dependent transport system. It is proposed that after FecA- and TonB-dependent transport of iron(III) dicitrate across the outer membrane, uptake through the cytoplasmic membrane follows the binding-protein-dependent transport mechanism. FecC and FecD exhibited homologies to each other, to the N- and C-terminal halves of FhuB of the iron(III) hydroxamate transport system, and to BtuC of the vitamin B12 transport system. FecB showed some homology to FhuD, suggesting that the latter may function in the same manner as a binding protein in iron(III) hydroxamate transport. The close homology between the proteins of the two iron transport systems and of the vitamin B12 transport system indicates a common evolution for all three systems.  相似文献   

13.
An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an "in" position where it can coordinate the heme iron to an "out" orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg(228) in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg(228), and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B(12)-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B(12), compared with ligands for FhuD, a peptide siderophore.  相似文献   

14.
Plasmid-mediated iron uptake and virulence in Vibrio anguillarum   总被引:4,自引:0,他引:4  
The plasmid pJM1 of Vibrio anguillarum harbors genes encoding proteins that enable the bacterial cell to survive under iron limiting conditions. A subset of these proteins are involved in the biosynthesis of the siderophore anguibactin and in the internalization of the ferric-siderophore into the cell cytosol. We have identified several genes encoding non-ribosomal peptide synthetases that catalyze the synthesis of anguibactin, these genes are: angB/G, angM, angN, angR, and angT. In addition, the genes fatA, fatB, fatC, and fatD are involved in the transport of ferric-anguibactin complexes. These transport genes, together with the biosynthesis genes angR and angT, are included in the iron transport biosynthesis operon (ITBO). Both the biosynthesis and the transport genes are under tight positive as well as negative control. We have identified four regulators; two of them, a chromosomally encoded Fur and a plasmid-mediated antisense RNA, RNAbeta, act in a negative fashion, while positive regulation is facilitated by AngR and TAFr. We also have evidence that the siderophore itself plays a positive role in the regulatory mechanism of the expression of both transport and biosynthesis genes.  相似文献   

15.
Siderophore binding proteins play a key role in the uptake of iron in many gram-positive and gram-negative bacteria. FhuD is a soluble periplasmic binding protein that transports ferrichrome and other hydroxamate siderophores. The crystal structure of FhuD from Escherichia coli in complex with the ferrichrome homolog gallichrome has been determined at 1.9 ? resolution, the first structure of a periplasmic binding protein involved in the uptake of siderophores. Gallichrome is held in a shallow pocket lined with aromatic groups; Arg and Tyr side chains interact directly with the hydroxamate moieties of the siderophore. FhuD possesses a novel fold, suggesting that its mechanisms of ligand binding and release are different from other structurally characterized periplasmic ligand binding proteins.  相似文献   

16.
17.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

18.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

19.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   

20.
FhuD is a periplasmic binding protein (PBP) that, under iron-limiting conditions, transports various hydroxamate-type siderophores from the outer membrane receptor (FhuA) to the inner membrane ATP-binding cassette transporter (FhuBC). Unlike many other PBPs, FhuD possesses two independently folded domains that are connected by an α-helix rather than two or three central β-strands. Crystal structures of FhuD with and without bound gallichrome have provided some insight into the mechanism of siderophore binding as well as suggested a potential mechanism for FhuD binding to FhuB. Since the α-helix connecting the two domains imposes greater rigidity on the structure relative to the β-strands in other ‘classical’ PBPs, these structures reveal no large conformational change upon binding a hydroxamate-type siderophore. Therefore, it is difficult to explain how the inner membrane transporter FhuB can distinguish between ferrichrome-bound and ferrichrome-free FhuD. In the current study, we have employed a 30 ns molecular dynamics simulation of FhuD with its bound siderophore removed to explore the dynamic behavior of FhuD in the substrate-free state. The MD simulation suggests that FhuD is somewhat dynamic with a C-terminal domain closure of 6° upon release of its siderophore. This relatively large motion suggests differences that would allow FhuB to distinguish between ferrichrome-bound and ferrichrome-free FhuD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号