首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WI-38 and HeLa cells in mitosis have been selected from fixed monolayer cultures and serially sectioned for electron microscopy. Sections perpendicular to the spindle axis permit counting of the number of microtubules at each position on the spindle axis and hence the preparation of tubule distribution profiles. Errors intrinsic to this method are discussed. The changes in the tubule distributions from one mitotic stage to another provide evidence concerning the behavior of the spindle tubules during mitosis. The ratio of the number of tubules passing the chromosomes on the metaphase plate to the maximum number in each half spindle is about 1/2. This ratio changes little in early anaphase, and then decreases in late anaphase at about the same time that a zone of increased tubule number develops at the middle of the interzone. The region where the stem bodies form contains about 3/2 the number of tubules seen elsewhere in the interzone. This ratio is almost constant as the mid-body forms in telophase and then increases to 2/1 in early interphase before the final stages of cytokinesis occur.  相似文献   

2.
This investigation describes the cytology of the ulotrichalean genera Ulothrix and Stigeoclonium. Cellular organization is similar to the degree that interphase cells of the 2 genera cannot be distinguished with certainly. In Stigeoclonium, the nuclear envelope becomes disrupted at the end of prophase, and centrioles enter the nucleoplasm. At metaphase the nuclear envelope is again intact, and some of the spindle tubules appear to be contiguous with the nuclear envelope. The spindle in Ulothrix is essentially open with, no attachment of spindle tubules to the nuclear envelope and with, centrioles on the spindle-cytoplasm interface at the spindle poles. Spindle poles are blunt in Stigeoclonium and pointed in Ulothrix. Cytokinesis is by cell plate formation in both genera, but there is no phragmoplast.  相似文献   

3.
SYNOPSIS. Electron-microscopic observations of Spirostomum ambiguum have demonstrated additional details of superficial and deep tubular connections with peristomial and somatic kinetosomes. The superficial peristomial tubules appear to connect adjacent rows of kinetosomes. Anatomically, they course distally from the proximal kinetosomal plate. The deep tubules run proximally from the kinetosomal plate. Those in the somatic region appear to enter the endoplasm; those in the peristomial region leave the kinetosome as bundles of either 10 or 11 tubules which steadily converge to form 2 compact rows of 10 tubular bundles. These tubules connect to 2 of the 3 rows of 10 cilia each, the rows of 3 being separated by membranous folds protruding perpendicular to the peristomial groove. The rows of bundles converge further, enter the endoplasm and fan out again into tubular sheets, some of which appear to course in an antero-posterior direction. Another set of tubules arises from each of the kinetosomes in the 3rd row of 10 kinetosomes and courses proximally at a different angle from those arising from the 2 other kinetosome rows. Terminations have not been observed for the deep somatic or peristomial tubules. Their possible role in producing the forceful longitudinal contraction of Spirostomum is discussed.  相似文献   

4.
Summary To detect structural alterations in human oocytes that may give rise to predisposition to aneuploidy, unfertilized human oocytes from an IVF programme were processed for indirect anti-tubulin immunofluorescence. The spindle of oocytes aged for 2 days is rather small, and bi- or multipolar. Chromosomes are no longer aligned at the spindle equator but are scattered all over the degenerating spindle. This implies that human oocytes aged for 2 days may no longer be able to develop into a chromosomally balanced, normal embryo. In oocytes aged for 3–4 days the chromosomes become more decondensed and form a restitution nucleus. Microtubules radiate out from the latter towards the cell periphery and form a network of fibres in the cytoplasm. A similar alignment of tubules is found in unfertilized, activated oocytes. Oocytes with an aberrant cytoskeleton and chromosomal array were predominantly obtained from aged females. They include two binucleated oocytes with two sets of chromosomes and two oocytes with displaced chromosomes one of which had a tripolar spindle.  相似文献   

5.
The distribution of F-actin cables in dividing endosperm cells of a higher plant, Haemanthus, was visualized with the immunogold-silver-enhanced method and compared with the arrangement of immunogold-stained microtubules in the same cells. The three-dimensional distribution of F-actin cables and microtubules during mitosis and cell plate formation was analyzed using ultrathin optical sectioning of whole mounts in polarized light video microscopy. F-actin cables form a loose irregular network in the interphase cytoplasm. Much of this network remains outside of the spindle during mitosis. A few F-actin cables were detected within the spindle. Their pronounced rearrangement during mitosis appears to be related to the presence and growth of microtubule arrays. During prometaphase, actin cables located on the spindle surface and those present within the spindle tend to arrange parallel to the long axis of the spindle. Cables outside the spindle do not reorient, except those at the polar region, where they appear to be compressed by the elongating spindle. Beginning with mid-anaphase, shorter actin cables oriented in various directions accumulate at the equator. Some of them are incorporated into the phragmoplast and cell plate and are gradually fragmented as the cell plate is formed and ages. Actin cables adjacent to microtubule arrays often show a regular punctate staining pattern. Such a pattern is seldom observed in the peripheral cytoplasm, which contains few microtubules. The rearrangement of F-actin cables mimicks the behavior of spindle inclusions, such as starch grains, mitochondria, etc., implying that F-actin is redistributed passively by microtubule growth or microtubule-related transport. Thus F-actin or actomyosin-based motility does not appear to be directly involved in mitosis and cytokinesis in higher plants.  相似文献   

6.
The three-dimensional architecture of syncytial-type cell plates in the endosperm of Arabidopsis has been analyzed at approximately 6-nm resolution by means of dual-axis high-voltage electron tomography of high-pressure frozen/freeze-substituted samples. Mini-phragmoplasts consisting of microtubule clusters assemble between sister and nonsister nuclei. Most Golgi-derived vesicles appear connected to these microtubules by two molecules that resemble kinesin-like motor proteins. These vesicles fuse with each other to form hourglass-shaped intermediates, which become wide (approximately 45 nm in diameter) tubules, the building blocks of wide tubular networks. New mini-phragmoplasts also are generated de novo around the margins of expanding wide tubular networks, giving rise to new foci of cell plate growth, which later become integrated into the main cell plate. Spiral-shaped rings of the dynamin-like protein ADL1A constrict but do not fission the wide tubules at irregular intervals. These rings appear to maintain the tubular geometry of the network. The wide tubular network matures into a convoluted fenestrated sheet in a process that involves increases of 45 and 130% in relative membrane surface area and volume, respectively. The proportionally larger increase in volume appears to reflect callose synthesis. Upon fusion with the parental plasma membrane, the convoluted fenestrated sheet is transformed into a planar fenestrated sheet. This transformation involves clathrin-coated vesicles that reduce the relative membrane surface area and volume by approximately 70%. A ribosome-excluding matrix encompasses the cell plate membranes from the fusion of the first vesicles until the onset of the planar fenestrated sheet formation. We postulate that this matrix contains the molecules that mediate cell plate assembly.  相似文献   

7.
Aspects of the ultrastructure of mitotic nuclei of the fungus Uromyces phaseoli var. vignae are described from both intercellular hyphae in the cowpea host and infection structures induced to differentiate in vitro. The interphase nucleus-associated organelle (NAO) consists of two trilamellar acircular disks connceted by an osmiophilic bar. The intranuclear spindle develops between these disks when they separate. The spindle contains pole to pole, interdigitating, chromosomal, and fragmentary microtubules arranged to form a central bundle along the surface of which lie the metaphase chromosomes. No metaphase plate is found. There are up to three microtubules per kinetochore and approximately 14 chromosomes on the haploid spindle. Telophase elongation appears to involve extension of pole to pole microtubules with no evidence for the remaining presence of interdigitating microtubules. Concomitantly, numerous cytoplasmic microtubules develop from each NAO disk where few or none are present in other phases. Reformation of the interphase NAO involves the formation of a sausage- shaped intermediate at late telophase. The nuclear envelope remains intact and the nucleolus persists throughtout division. Various aspects of the spindle and NAOs appear to be evolutionary intermediates between Ascomycetes and higher Basidiomycetes, thus supporting the theory of Basidiomycete evolution from the former group and demonstrating an encouraging correlation between mitotic characteristics and other phylogenetic markers.  相似文献   

8.
In somatic cells, integrity of cell division is safeguarded by the spindle checkpoint, a signaling cascade that delays the separation of sister chromatids in the presence of misaligned chromosomes. Aurora kinases play important roles in this process by promoting centrosome maturation, chromosome bi-orientation, spindle checkpoint signaling, and cytokinesis. To investigate the functions of Aurora kinases in male meiosis, we applied a small molecule Aurora inhibitor, ZM447439, to seminiferous tubules in vitro. Primary and secondary spermatocytes exposed to ZM447439 exhibit defects in the spindle morphology and fail to align their chromosomes at the metaphase plate. Moreover, the treated spermatocytes undergo a forced exit from the meiotic M-phase without cytokinesis. These results suggest that the activities of Aurora kinases are required for normal spindle assembly as well as for establishment and maintenance of proper microtubule-kinetochore attachments and spindle checkpoint signaling in male mammalian meiosis.  相似文献   

9.
B P Karadzhian 《Tsitologiia》1977,19(12):1327-1332
Six stages can be distinguished in the micronuclear first maturation division prophase of D. nasutum. Nucleolus-like structures of fibrillar nature, connected with micronuclear chromosomes seem to develop at the late leptotene. At zygotene-pachytene, the chromosomes condense, forming irregular loops. This coincides with formation of classically structured synaptinemal complexes in the micronuclei. At diplotene-diakinesis, chromosomal bivalents are uniformly scattered throughout the micronucleus. They aggregate into a net equatorial plate in the first division metaphase; chromosomes show prominent kinetochores with attached chromosomal microtubule bundles. The second maturation division starts immediately after the completion of the first division and is morphologically similar to agamic mitosis of the micronuclei of D. nasutum. During the 2th maturation division prophase, the compact chromosomes form a dense group and show no spreading inside the nucleus. They are interspaced by an amorphous material being possibly involved in the formation of spindle microtubules. The telophase spindle of the 2nd division likely as that of the Ist division divides into three parts, the two daughter nuclei and the separation spindle containing a material of depolymerized microtubules. Only one of the 2nd division derivatives enters the third maturation division. A short telophasic third division spindle is perpendicular to the surface of the contact between the conjugants and produces two pronuclei. The envelopes of the daughter micronuclei are formed from parts of the original nuclear envelope surrounding the entire spindle.  相似文献   

10.
Metaphase PtK1 cells, lysed into polymerization-competent microtubule protein, maintain a spindle which will gain or lose birefringence depending on the concentration of disassembled tubulin subunits used in the lysis medium. Concentrations of tubulin subunits greater than the equilibrium monomer value promote a rate and extent of birefringence increase that is proportional to the subunit concentration. Increase in spindle birefringence can be correlated with an increase in tubule number, though the relationship is not strictly linear. Increase in spindle tubule number is due to an vivo-like initiation of tubules at the mitotic centers, as well as tubulin addition onto pre-existing spindle fragments. Colcemid-treated prometaphase cells lysed into polymerization-competent tubulin develop large asters in the region of the centrioles and short tubules at kinetochores, making it unlikely that all microtubule formation in lysed cell preparations is dependent on tubulin addition to short tubule fragments. Asters can also form in colcemid-treated prometaphase cells lysed in tubulin that is incapable of spontaneous tubule initiation, suggesting that the centriolar region serves a tubule-initiator function in our lysed cell preparations. The ability of the centriole to initiate microtubule assembly is a time-dependent process-a ripening effect takes place between prophase and late prometaphase. Ripening is expressed by an increase in the number and length of tubules found associated with the centriolar region.  相似文献   

11.
Central mitotic spindles in Diatoma vulgare have been investigated using serial sections and electron microscopy. Spindles at both early stages (before metaphase) and later stages of mitosis (metaphase to telophase) have been analyzed. We have used computer graphics technology to facilitate the analysis and to produce stereo images of the central spindle reconstructed in three dimensions. We find that at prometaphase, when the nuclear envelope is dissassembling, the spindle is constructed from two sets of polar microtubules (MTs) that interdigitate to form a zone of overlap. As the chromosomes become organized into the metaphase configuration, the polar MTs, the spindle, and the zone of overlap all elongate, while the number of MTs in the central spindle decreases from greater than 700 to approximately 250. Most of the tubules lost are short ones that reside near the spindle poles. The previously described decrease in the length of the zone of overlap during anaphase central spindle elongation is clearly demonstrated in stereo images. In addition, we have used our three- dimensional data to determine the lengths of the spindle MTs at various times during mitotis. The distribution of lengths is bimodal during prometaphase, but the short tubules disappear and the long tubules elongate as mitosis proceeds. The distributions of MT lengths are compared to the length distributions of MTs polymerized in vitro, and a model is presented to account for our findings about both MT length changes and microtubule movements.  相似文献   

12.
The association of the two sperm cells inBrassica napus pollen following the generative cell division was investigated. The generative cell during division is located in the center of the pollen grain, within the vegetative cell. The space present between the two cells is slightly irregular as seen following standard glutaraldehyde fixation. After completion of mitosis vesicles appear in the equatorial plane, coalescing centripetally to form a cell plate which fuses with the membrane of the generative cell, dividing it in two sperm cells. They are isolated from the vegetative cell by the space between the two cell membranes and are separated from each other by a similar space resulting from the cell plate formed during cytokinesis.  相似文献   

13.
The three-dimensional growth in vitro of cloned rat mammary cell lines on floating type I collagen gels has been investigated. Multicellular outgrowths formed by the various cell types show morphological differences on serial histological sectioning and electron microscopy. One cell line, Rama 25, an epithelial cell line derived from a dimethylbenz(a)anthracene (DMBA)-induced mammary adenocarcinoma can form branched tubules within the matrix. The amount of collagen in the matrix modified the structure of the predominant outgrowths formed by this cell line. High-concentration (0.6% w/v) collagen gels support the growth of tubules up to 0.5 mm in length which have an extensive lumen surrounded by rings of up to 26 cells. Absence of differentiated myoepithelial elements around the ring suggests a resemblence to primitive ducts found in the mammary glands of neonatal rats. The spectrum of cellular polarity toward the lumen seen throughout the tubules and the occasional irregular arrangement of epithelial cells are features of adenocarcinoma. Lumen formation occurs by central cell necrosis and separation of the external layers of initially solid cords. The tubules branch either dichotomously, by bifurcation at the distal ends or monopodially, by budding at the sides of the outgrowths. Rama 25 grown on gels containing lower concentrations of collagen (0.1 or 0.3% w/v) produce narrow branching structures with incomplete lumina and spikes of elongated cells. Tubular structures are not formed by Rama 25 grown on nonfloating gels. At the light microscopic level the layer of spindle cells formed beneath the surface monolayer on nonfloated gels resembles the sarcomatous regions of tumors, however at the ultrastructural level the spindle cells show some evidence of being myoepithelial-like rather than fibroblast-like. Sandwiching the epithelial cell sheet between two layers of collagen gel results in loss of contact with the media and the formation of spindle cells. The myoepithelial-like cell lines Rama 29 and Rama 401 form spiked branches of elongated cells and solid branching cords of cells, respectively. However, no lumen formation is observed. The fibroblast-like cell line Rama 27 shows extensive migration of either single cells or chains of cells into the gel. Thus only one cell type (Rama 25) is necessary to form branched tubules in vitro and the structure of the tubules can be modified by collagen, a component of the extracellular matrix.  相似文献   

14.
Immunofluorescence microscopy of flowering plant root cells indicates that the earliest interphase microtubules appear during cytokinesis, radiating from the former spindle poles and subsequently from the nuclear envelope. They form networks that have microtubule focal points in the cortex underlying cell faces and in the cytoplasm between the nucleus and cortex. Cortical networks are rapidly replaced by the highly aligned array normally associated with interphase. An antibody that in animal cells identifies the location of pericentriolar material, the site of microtubule initiation, is also localized around the plant cell nuclear envelope at the time that putative early interphase microtubule networks are seen.  相似文献   

15.
Testes of jellyfish Phialidium gregarium were fixed in 2 per cent OsO4 in Veronal-acetate buffer at pH 7.4. Thin sections showed that in young spermatids the spindle fibers of the last maturation division are attached to satellites of the filament-forming centriole. In more mature spermatids this attachment is not observed. During the developmental phase, nine satellites can be observed emanating from the interspaces between the nine tubular triplets of this centriole. A circular region on each of the enlarged distal ends of the satellites attaches them to the cell membrane. The satellites apparently provide a firm anchor for the axial filament. Each of the epithelial cells covering the testis produces a single long flagellum. On the filament-forming centriole often a satellite can be observed to which tubules are attached. These tubules are 180 A in diameter and probably represent remnants of spindle fibers. It is suggested that the distal centriole has the ability to form several satellites or appendages at appropriate times during the cell cycle. These satellites are distinct from the daughter centrioles in that they are supportive structures: in certain phases of cell life, spindle fibers may attach to them, while in other instances the distal centriole and the flagellum it is forming are anchored by them.  相似文献   

16.
A fine structure study of the phragmoplast and developing cell plate has been made on glutaraldehyde-osmium tetroxide-fixed, dividing, cultured cells of the liquid endosperm of Haemanthus katherinae Baker. The phragmoplast arises between the telophase nuclei, usually in association with a remnant strand of spindle elements, and consists of an accumulation of microtubules oriented at right angles to the plane of the future cell plate. The microtubules, which are 200–240 A in diameter, occur in small clusters spaced at approximately 0.2–0.3 µ intervals along the plate. Short interconnections interpreted as "cross-bridges" have been observed between individual microtubules. Within each cluster there is an electron-opaque zone about 0.3 µ in width which can be attributed in part to an overlap of microtubules from both sides of the plate and in part to a local accumulation of an amorphous electron-opaque material. During development these dense zones become aligned in a plane which itself defines the plane of the plate. Vesicles, commonly observed in long files, are derived from a cytoplasmic matrix rich in elements of the endoplasmic reticulum and sparse in dictyosomes. They aggregate between the clusters of microtubules and eventually coalesce to form the cell plate.  相似文献   

17.
In male-determined, paedogenetically developing eggs of Heteropeza pygmaea a restitutive fertilization takes place after meiosis. Two small nuclei of maternal origin (somatic nuclei) and the egg nucleus migrate to the center of the egg chamber. Their chromosomes then form the metaphase plate of the primary cleavage nucleus. The in vitro observations and the analysis of photomicrographs and time lapse films revealed that the metaphase stage can be reached in three different ways: 1. The egg nucleus and the two somatic nuclei form one common spindle. 2. The egg nucleus forms a spindle and the two somatic nuclei together form another one. The two spindles then fuse in late prometaphase and form a single spindle. 3. The egg nucleus alone forms a spindle. The chromosomes of the somatic nuclei migrate to the equator of this spindle. This variation in the restitutive fertilization is explained by an increasing asynchrony between the development of the egg nucleus and the slower somatic nuclei from the first to the third type.  相似文献   

18.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

19.
The endoplasmic reticulum (ER) of plant cells undergoes a drastic reorganization during cell division. In tobacco NT-1 cells that stably express a GFP construct targeted to the ER, we have mapped the reorganization of ER that occurs during mitosis and cytokinesis with confocal laser scanning microscopy. During division, the ER and nuclear envelope do not vesiculate. Instead, tubules of ER accumulate around the chromosomes after the nuclear envelope breaks down, with these tubules aligning parallel to the microtubules of the mitotic spindle. In cytokinesis, the phragmoplast is particularly rich in ER, and the transnuclear channels and invaginations present in many interphase cells appear to develop from ER tubules trapped in the developing phragmoplast. Drug studies, using oryzalin and latrunculin to disrupt the microtubules and actin microfilaments, respectively, demonstrate that during division, the arrangement of ER is controlled by microtubules and not by actin, which is the reverse of the situation in interphase cells.  相似文献   

20.
Cells of onion and garlic root tips were examined under the electron and phase contrast microscopes after fixation in KMnO4. Special attention was focused on the distribution and behavior of the endoplasmic reticulum (ER) during the several phases of mitosis. Slender profiles, recognized as sections through thin lamellar units of the ER (most prominent in KMnO4-fixed material), are distributed more or less uniformly in the cytoplasm of interphase cells and show occasional continuity with the nuclear envelope. In late prophase the nuclear envelope breaks down and its remnants plus cytoplasmic elements of the ER, which are morphologically identical, surround the spindle in a zone from which mitochondria, etc., are excluded. During metaphase these ER elements persist and concentrate as two separate systems in the polar caps or zones of the spindle. At about this same time they begin to proliferate and to invade the ends of the spindle. The invading lamellar units form drape-like partitions between the anaphase chromosomes. In late anaphase, their advancing margins reach the middle zone of the spindle and begin to fray out. Finally, in telophase, while elements of the ER in the poles of the spindle coalesce around the chromosomes to form the new envelope, the advancing edges of those in the middle zone reticulate at the level of the equator to form a close lattice of tubular elements. Within this, which is identified as the phragmoplast, the earliest signs of the cell plate appear in the form of small vesicles. These subsequently grow and fuse to complete the separation of the two protoplasts. Other morphological units apparently participating in mitosis are described. Speculation is provided on the equal division or not of the nuclear envelope and the contribution the envelope fragments make to the ER of the new cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号