首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

2.
In almost all biological life forms, molybdenum and tungsten are coordinated by molybdopterin (MPT), a tricyclic pyranopterin containing a cis-dithiolene group. Together, the metal and the pterin moiety form the redox reactive molybdenum cofactor (Moco). Mutations in patients with deficiencies in Moco biosynthesis usually occur in the enzymes catalyzing the first and second steps of biosynthesis, leading to the formation of precursor Z and MPT, respectively. The second step is catalyzed by the heterotetrameric MPT synthase protein consisting of two large (MoaE) and two small (MoaD) subunits with the MoaD subunits located at opposite ends of a central MoaE dimer. Previous studies have determined that the conversion of the sulfur- and metal-free precursor Z to MPT by MPT synthase involves the transfer of sulfur atoms from a C-terminal MoaD thiocarboxylate to the C-1' and C-2' positions of precursor Z. Here, we present the crystal structures of non-thiocarboxylated MPT synthase from Staphylococcus aureus in its apo form and in complex with precursor Z. A comparison of the two structures reveals conformational changes in a loop that participates in interactions with precursor Z. In the complex, precursor Z is bound by strictly conserved residues in a pocket at the MoaE dimer interface in close proximity of the C-terminal glycine of MoaD. Biochemical evidence indicates that the first dithiolene sulfur is added at the C-2' position.  相似文献   

3.
Matthies A  Nimtz M  Leimkühler S 《Biochemistry》2005,44(21):7912-7920
The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N-terminus of the His6-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity.  相似文献   

4.
The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an l-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human l-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from l-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.  相似文献   

5.
The molybdenum cofactor (Moco) is part of the active site of all molybdenum (Mo)-dependent enzymes, except nitrogenase. Moco consists of molybdopterin (MPT), a phosphorylated pyranopterin with an enedithiolate coordinating Mo and it is synthesized by an evolutionary old multistep pathway. The plant protein Cnx1 from Arabidopsis thaliana catalyzes with its two domains (E and G) the terminal step of Moco biosynthesis, the insertion of Mo into MPT. Recently, the high-resolution MPT-bound structure of the Cnx1 G domain (Cnx1G) has been determined (Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., and Schwarz, G. (2004) Nature 430, 803-806). Besides defining the MPT-binding site a novel and unexpected modification of MPT has been identified, adenylated MPT. Here we demonstrate that it is Cnx1G that catalyzes the adenylation of MPT. In vitro synthesized MPT was quantitatively transferred from Escherichia coli MPT synthase to Cnx1G. The subsequent adenylation reaction by Cnx1G was Mg(2+)- and ATP-dependent. Whereas Mn(2+) could partially replace Mg(2+), ATP was the only nucleotide accepted by Cnx1G. Consequently the formation of pyrophosphate was demonstrated, which was dependent on the ability of Cnx1G to bind MPT. Pyrophosphate, either formed in the reaction or added externally, inhibited the Cnx1G-catalyzed MPT adenylation reaction. Catalytically inactive Cnx1G mutant variants showed impaired MPT adenylation confirming that MPT-AMP is the reaction product of Cnx1G. Therefore Cnx1G is a MPT adenylyltransferase catalyzing the activation of MPT, a universal reaction in the Moco synthetic pathway because Cnx1G is able to reconstitute also bacterial and mammalian Moco biosynthesis.  相似文献   

6.
BACKGROUND: Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in archaea, eubacteria, and eukaryotes. In humans, genetic abnormalities in the biosynthetic pathway result in Moco deficiency, which is accompanied by severe neurological symptoms and death shortly after birth. The Escherichia coli MoeA and MogA proteins are involved in the final step of Moco biosynthesis: the incorporation of molybdenum into molybdopterin (MPT), the organic pyranopterin moiety of Moco. RESULTS: The crystal structure of E. coli MoeA has been refined at 2 A resolution and reveals that the highly elongated MoeA monomer consists of four clearly separated domains, one of which is structurally related to MogA, indicating a divergent evolutionary relationship between both proteins. The active form of MoeA is a dimer, and a putative active site appears to be localized to a cleft formed between domain II of the first monomer and domains III and IV of the second monomer. CONCLUSIONS: In eukaryotes, MogA and MoeA are fused into a single polypeptide chain. The corresponding mammalian protein gephyrin has also been implicated in the anchoring of glycinergic receptors to the cytoskeleton at inhibitory synapses. Based on the structures of MoeA and MogA, gephyrin is surmised to be a highly organized molecule containing at least five domains. This multidomain arrangement could provide a structural basis for its functional diversity. The oligomeric states of MoeA and MogA suggest how gephyrin could assemble into a hexagonal scaffold at inhibitory synapses.  相似文献   

7.
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.  相似文献   

8.
Molybdenum cofactor biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in cofactor biosynthesis in humans lead to a severe and usually fatal disease. The molybdenum cofactor contains a tricyclic pyranopterin, termed molybdopterin, that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of molybdopterin is generated by molybdopterin synthase, which consists of a large (MoaE) and small (MoaD) subunit. The crystal structure of molybdopterin synthase revealed a heterotetrameric enzyme in which the C terminus of each MoaD subunit is deeply inserted into a MoaE subunit to form the active site. In the activated form of the enzyme, the MoaD C terminus is present as a thiocarboxylate. The present study identified the position of the thiocarboxylate sulfur by exploiting the anomalous signal originating from the sulfur atom. The structure of molybdopterin synthase in a novel crystal form revealed a binding pocket for the terminal phosphate of molybdopterin, the product of the enzyme, and suggested a binding site for the pterin moiety present in precursor Z and molybdopterin. Finally, the crystal structure of the MoaE homodimer provides insights into the conformational changes accompanying binding of the MoaD subunit.  相似文献   

9.
The molybdenum cofactor (Moco) is found in a variety of enzymes present in all phyla and comprises a family of related molecules containing molybdopterin (MPT), a tricyclic pyranopterin with a cis-dithiolene group, as the invariant essential moiety. MPT biosynthesis involves a conserved pathway, but some organisms perform additional reactions that modify MPT. In eubacteria, the cofactor is often present in a dinucleotide form combining MPT and a purine or pyrimidine nucleotide via a pyrophosphate linkage. In Escherichia coli, the MobA protein links a guanosine 5'-phosphate to MPT forming molybdopterin guanine dinucleotide. This reaction requires GTP, MgCl(2), and the MPT form of the cofactor and can efficiently reconstitute Rhodobacter sphaeroides apo-DMSOR, an enzyme that requires molybdopterin guanine dinucleotide for activity. In this paper, we present the crystal structure of MobA, a protein containing 194 amino acids. The MobA monomer has an alpha/beta architecture in which the N-terminal half of the molecule adopts a Rossman fold. The structure of MobA has striking similarity to Bacillus subtilis SpsA, a nucleotide-diphospho-sugar transferase involved in sporulation. The cocrystal structure of MobA and GTP reveals that the GTP-binding site is located in the N-terminal half of the molecule. Conserved residues located primarily in three signature sequence motifs form crucial interactions with the bound nucleotide. The binding site for MPT is located adjacent to the GTP-binding site in the C-terminal half of the molecule, which contains another set of conserved residues presumably involved in MPT binding.  相似文献   

10.
In Escherichia coli, the MoaD protein plays a central role in the conversion of precursor Z to molybdopterin (MPT) during molybdenum cofactor biosynthesis. MoaD has a fold similar to that of ubiquitin and contains a highly conserved C-terminal Gly-Gly motif, which in its active form contains a transferrable sulfur in the form of a thiocarboxylate group. During MPT biosynthesis, MoaD cycles between two different heterotetrameric complexes, one with MoaE to form MPT synthase and the other with MoeB, a protein similar to E1 in the ubiquitin pathway, to regenerate its transferrable sulfur. To determine the specific roles of each of the two terminal Gly residues with regard to the MoaD cycle, variants at the penultimate (Gly80) or terminal (Gly81) residues of both MoaD and thiocarboxylated MoaD were created. These variants were analyzed to determine their effects on complex formation with MoaE and MoeB, formation of the MoaD-acyl-adenylate complex, transfer of sulfur to precursor Z to form MPT, and total cofactor biosynthesis. The combined results show that while conservative substitutions at Gly80 had little effect on any of the processes that were examined, the terminal MoaD residue (Gly81) is important for transfer of sulfur to precursor Z and essential for formation of the MoaD-AMP complex. These results further our understanding of the mechanistic similarities of the MoaD-MoeB reaction to that of the ubiquitin-E1 system.  相似文献   

11.
We were able to reconstitute molybdopterin (MPT)-free sulfite oxidase in vitro with the molybdenum cofactor (Moco) synthesized de novo from precursor Z and molybdate. MPT-free human sulfite oxidase apoprotein was obtained by heterologous expression in an Escherichia coli mutant with a defect in the early steps of MPT biosynthesis. In vitro reconstitution of the purified apoprotein was achieved using an incubation mixture containing purified precursor Z, purified MPT synthase, and sodium molybdate. In vitro synthesized MPT generated from precursor Z by MPT synthase remains bound to the synthase. Surprisingly, MPT synthase was found capable of donating bound MPT to MPT-free sulfite oxidase. MPT was not released from MPT synthase when either bovine serum albumin or Moco-containing sulfite oxidase was used in place of aposulfite oxidase. After the inclusion of sodium molybdate in the reconstitution mixture, active sulfite oxidase was obtained, revealing that in vitro MPT synthase and aposulfite oxidase are sufficient for the insertion of MPT into sulfite oxidase and the conversion of MPT into Moco in the presence of high concentrations of molybdate. The conversion of MPT into Moco by molybdate chelation apparently occurs concomitantly with the insertion of MPT into sulfite oxidase.  相似文献   

12.
Because of mechanistic parallels in the activation of ubiquitin and the biosynthesis of several sulfur-containing cofactors, we have characterized the human Urm1 and Saccharomyces cerevisiae Uba4 proteins, which are very similar in sequence to MOCS2A and MOCS3, respectively, two proteins essential for the biosynthesis of the molybdenum cofactor (Moco) in humans. Phylogenetic analyses of MOCS3 homologues showed that Uba4 is the MOCS3 homologue in yeast and thus the only remaining protein of the Moco biosynthetic pathway in this organism. Because of the high levels of sequence identity of human MOCS3 and yeast Uba4, we purified Uba4 and characterized the catalytic activity of the protein in detail. We demonstrate that the C-terminal domain of Uba4, like MOCS3, has rhodanese activity and is able to transfer the sulfur from thiosulfate to cyanide in vitro. In addition, we were able to copurify stable heterotetrameric complexes of Uba4 with both human Urm1 and MOCS2A. The N-terminal domain of Uba4 catalyzes the activation of either MOCS2A or Urm1 by formation of an acyl-adenylate bond. After adenylation, persulfurated Uba4 was able to form a thiocarboxylate group at the C-terminal glycine of either Urm1 or MOCS2A. The formation of a thioester intermediate between Uba4 and Urm1 or MOCS2A was not observed. The functional similarities between Uba4 and MOCS3 further demonstrate the evolutionary link between ATP-dependent protein conjugation and ATP-dependent cofactor sulfuration.  相似文献   

13.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   

14.
Molybdopterin (MPT) is a pyranopterin with a unique dithiolene group coordinating molybdenum (Mo) or tungsten (W) in all Mo- and W-enzymes except nitrogenase. In Escherichia coli, MPT is formed by incorporation of two sulfur atoms into precursor Z, which is catalyzed by MPT synthase. The recently solved crystal structure of MPT synthase (Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V., and Schindelin, H. (2000) Nat. Struct. Biol. 8, 42-46) shows the heterotetrameric nature of the enzyme that is composed of two small (MoaD) and two large subunits (MoaE). According to sequence and structural similarities among MoaD, ubiquitin, and ThiS, a thiocarboxylation of the C terminus of MoaD is proposed that would serve as the source of sulfur that is transferred to precursor Z. Here, we describe the in vitro generation of carboxylated and thiocarboxylated MoaD. Both forms of MoaD are monomeric and are able to form a heterotetrameric complex after coincubation in equimolar ratios with MoaE. Only the thiocarboxylated MPT synthase complex was found to be able to convert precursor Z in vitro to MPT. Slight but significant differences between the carboxylated and the thiocarboxylated MPT synthase can be seen using size exclusion chromatography. A two-step reaction of MPT synthesis is proposed where the dithiolene is generated by two thiocarboxylates derived from a single tetrameric MPT synthase.  相似文献   

15.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in archaea, eubacteria, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in this biosynthetic pathway trigger an autosomal recessive disease with severe neurological symptoms, which usually leads to death in early childhood. The MogA protein exhibits affinity for molybdopterin, the organic component of Moco, and has been proposed to act as a molybdochelatase incorporating molybdenum into Moco. MogA is related to the protein gephyrin, which, in addition to its role in Moco biosynthesis, is also responsible for anchoring glycinergic receptors to the cytoskeleton at inhibitory synapses. The high resolution crystal structure of the Escherichia coli MogA protein has been determined, and it reveals a trimeric arrangement in which each monomer contains a central, mostly parallel beta-sheet surrounded by alpha-helices on either side. Based on structural and biochemical data, a putative active site was identified, including two residues that are essential for the catalytic mechanism.  相似文献   

16.
The molybdopterin (MPT) synthase complex in Escherichia coli consists of two MoaE subunits and two MoaD subunits in a heterotetrameric structure with the two MoaE subunits forming a central dimer. Each MoaD subunit binds to a single MoaE molecule to form two identical MoaE/MoaD interfaces. Here we define the thermodynamic properties of the interaction between MoaE and MoaD in MPT synthase using a H/D exchange and matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy based method termed SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX-derived protein folding free energies and m values are reported for MoaE in the presence and absence of MoaD and MoaD-SH, the thiocarboxylated form of MoaD that is essential for the catalytic activity of MPT synthase. The protein folding free energy measurements were used to calculate a dissociation constant of 17 +/- 7 microM for the binding of MoaD to MoaE in inactive MPT synthase and a dissociation constant of 2.6 +/- 0.9 microM for the binding of MoaD-SH to MoaE in active MPT synthase. The increased binding affinity of MoaD-SH for MoaE is consistent with a previously proposed mechanism for the MPT synthase reaction. Using the increased m values exhibited by MoaE in the presence of either MoaD subunit, the solvent accessible surface area buried upon formation of the subunit interface in MPT synthase was estimated to be 2378 A(2) for inactive MPT synthase and 4117 A(2) for active MPT synthase.  相似文献   

17.
It has been shown that conversion of precursor Z to molybdopterin (MPT) by Escherichia coli MPT synthase entails the transfer of the sulfur atom of the C-terminal thiocarboxylate from the small subunit of the synthase to generate the dithiolene group of MPT and that the moeB mutant of E. coli contains inactive MPT synthase devoid of the thiocarboxylate. The data presented here demonstrate that l-cysteine can serve as the source of the sulfur for the biosynthesis of MPT in vitro but only in the presence of a persulfide-containing sulfurtransferase such as IscS, cysteine sulfinate desulfinase (CSD), or CsdB. A fully defined in vitro system has been developed in which an inactive form of MPT synthase can be activated by incubation with MoeB, Mg-ATP, l-cysteine, and one of the NifS-like sulfurtransferases, and the addition of precursor Z to the in vitro system gives rise to MPT formation. The use of radiolabeled l-[(35)S]cysteine has demonstrated that both sulfurs of the dithiolene group of MPT originate from l-cysteine. It was found that MPT can be produced from precursor Z in an E. coli iscS mutant strain, indicating that IscS is not required for the in vivo sulfuration of MPT synthase. A comparison of the ability of the three sulfurtransferases to provide the sulfur for MPT formation showed the highest activity for CSD in the in vitro system.  相似文献   

18.
19.
BACKGROUND: The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS: MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS: Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号