首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are reporting the physical location of parental DNA sequences in 28 recombinants produced by crossing herpes simplex viruses (HSV) 1 and 2. The parental crosses were of two kinds. In the first, temperature-sensitive mutants of HSV-1 and HSV-2 were crossed to produce wild-type recombinants. In the second, temperature-sensitive mutants of HSV-1 rendered resistant to phosphonoacetic acid were crossed with wild-type HSV-2, and recombinants that multiplied at nonpermissive temperature and were resistant to the drug were selected. The DNAs of the recombinants were mapped with XbaI, EcoRI, HpaI, HsuI, BglII, and, in some instances, KpnI restriction endonucleases. The results were as follows. (i) We established the colinear arrangements of HSV-1 and HSV-2 DNAs. (ii) There was extensive interchange of genomic regions, ranging from the exchange or the entire L of S component of HSV DNA to substitutions of regions within the same component. In some recombinants, the reiterated sequences ab and ac bracketing the L and S components of HSV DNA were heterotypic. Most recombinants grew well and showed no obvious defects. (iii) The number of crossover events ranged from one to as many as six. Although crossover events occurred throughout the DNA, some clustering of crossover events was observed. (iv) Analysis of recombinants permitted localization of several markers used in this study and appears to be a useful technique for marker mapping. (v) As previously reported, HSV DNA consists of four populations, differing in relative orientation of the L and S components. All recombinants could be displayed in one arrangement of L and S such that the number of crossover events was minimized. The data are consistent with the hypothesis that only one arrangement of the parental DNA participates in the generation of recombinants.  相似文献   

2.
We have mapped the location in herpes simplex virus (HSV) DNA of (i) three mutations at different loci (syn loci) which alter the social behavior of infected cells from clumping of rounded cells to polykaryocytosis, (ii) a mutation which determines the accumulation of one major glycoprotein [VP8.0(C(2))], and (iii) the sequences encoding four major virus glycoproteins [VP8.0(C(2)), VP7(B(2)), VP8.5(A), and VP19E(D(2))]. The experimental design and results were as follows. (i) Analysis of HSV-1 x HSV-2 recombinants showed that the sequences encoding the VP19E(D(2)) glycoprotein map in the S component, whereas the sequences encoding the other three major glycoproteins are in two locations in the L component of HSV DNA. The templates specifying the HSV-1 and HSV-2 glycoprotein VP8.0(C(2)) appear not to be colinear; we isolated recombinants specifying glycoproteins comigrating in sodium dodecyl sulfate-polyacrylamide gels with VP8.0(C(2)) of both HSV-1 and HSV-2. (ii) Marker rescue of a ts mutant defective in accumulation of glycoprotein VP7(B(2)) showed that the mutation maps within a region containing the sequences encoding that glycoprotein. (iii) Marker transfer experiments involving transfection of rabbit skin cells with donor HSV-1(F) DNA and fragments from several donor strains causing fusion of Vero or both Vero and HEp-2 cells revealed the existence of three syn loci specifying the social behavior of cells and one locus (Cr) determining the accumulation of glycoprotein VP8.0(C(2)). The Cr locus maps to the right of the template specifying VP8.0(C(2)) glycoprotein. Loci syn 1 and syn 2 map at or near the Cr locus but can be segregated from it. Locus syn 3 maps at or near the template specifying glycoproteins VP7(B(2)) and VP8.5(A). The expression of mutations in the syn 1 and syn 3 loci appear to be cell type dependent, in that recombinants with these mutations fuse Vero cells but not HEp-2 cells. Recipients of the syn 2 locus or of both syn 2 and syn 1 loci fuse both Vero and HEp-2 cells.  相似文献   

3.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

4.
We have taken a new approach to identify and fine map previously undescribed herpes simplex virus (HSV) functions. In experiments described in this report the antibiotic coumermycin A1 was used to select two HSV type 1 BamHI fragments cloned in pBR322 that confer partial resistance to drug-susceptible Escherichia coli. The genes encoding these HSV functions have been designated cour-1 and cour-2 and have been fine mapped to the HSV sequences. HSV-cour1 is located at the left end of BamHI-F near HSV type 1 genomic map coordinate 0.645. cour-2 maps to BamHI-M', which is a 159-base-pair internal component of the alpha ICP4-coding sequence located in the reiterated sequences of the S component. In pBR322 both inserts apparently rely on the tet promoter for expression. Additionally, cour-2 functions when present as a BamHI insert in pUC7. The analysis of cour-2 "maxi" cell proteins reveals the presence of proteins produced by the fusion of HSV-1 BamHI-M' sequences and the sequences of the vector genes, i.e., the major tet product for pBR322 and the modified beta-galactosidase for pUC7. These data suggest that the development of bacterial assays for fusion products of eucaryotic DNA open reading frames in plasmid vectors may be a useful technique for initiating gene function studies.  相似文献   

5.
Recombinants between temperature-sensitive mutants of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) were constructed. Using restriction endonucleases, we analyzed the genome composition of 17 intertypic recombinants and detected crossovers in every region of the genome. The virion DNA of one recombinant appeared to be largely "frozen" in two of the four possible genome arrangements of HSV. Knowledge of the genome structures of recombinants enabled us to physically map immediate early polypeptides. We present evidence that the immediate early polypeptide Vmw IE 110 of HSV-1 and its functionally equivalent polypeptide, Vmw IE 118, of HSV-2 may map in the repetitive sequences bounding the long unique region of HSV.  相似文献   

6.
Mutations (paar) in herpes simplex virus (HSV) which confer resistance to phosphonoacetic acid involve genes associated with virus-induced DNA polymerase activity. Two mutants of HSV (HSV-1 tsH and HSV-2 ts6) produce a thermolabile DNA polymerase activity. In this study, the ts lesions present in these mutants and those present in two independent phosphonoacetic acid-resistant mutants of HSV-1 and HSV-2 (paar-1 and paar-2) have been physically mapped by restriction endonuclease analysis of recombinants produced between HSV-1 and HSV-2 by intertypic marker rescue. All four mutations mapped within a 3.3-kilobase pair region around map unit 40. The accuracy of the method is reflected by the mapping results for tsH and paar-2, which were found to lie in the same 1.3-kilobase pair region. paar-1 was found to lie to the right of ts6. Virus-induced DNA polymerase is thought to have a molecular weight of 150,000, necessitating a gene with a coding capacity of 4.6 kilobase pairs. The four mutations mapped in this study all lie within a region smaller than this, but the results do not yet prove that all four lesions reside in this or any single gene.  相似文献   

7.
Analyses of the reactivity and patterns of synthesis of infected cell polypeptides (ICPs) specified by herpes simplex virus (HSV) 1 and 2 and by HSV-1 X HSV-2 recombinants indicated that monoclonal antibody H1183 reacted with HSV-1 alpha ICP0, whereas monoclonal antibody H1113 reacted with both HSV-1 and HSV-2 alpha ICP27. H1083 and H1113 and a monoclonal antibody to ICP4 (H640) similar to one previously described (D. K. Braun et al., J. Virol. 46:103-112.) were then used to study the properties of these alpha proteins. The results were as follows: alpha ICP0, ICP4, and ICP27 accumulated primarily in the nuclei of infected cells. ICP4 and ICP27 were poorly soluble in nondenaturing buffer solutions. ICP0 was considerably more soluble than ICP4 and ICP27. ICP0, ICP4, and ICP27 were readily partially purified by immunoaffinity chromatography from lysates of infected cells solubilized with denaturing agents such as sodium dodecyl sulfate. ICP0 and ICP27 were phosphorylated in cells overlaid with medium containing 32P early (1 to 3 h) or late (18 to 20 h) postinfection. A fraction, but not all, 32P that was incorporated early was chased in the presence of unlabeled phosphate. ICP0, ICP4, and ICP27 labeled with either 32P or [35S]methionine yielded multiple spots upon two-dimensional separations. However, ICP4 quantitatively precipitated at the origin when the migration in the first dimension was from acid to base, and both ICP4 and ICP27 partially precipitated at the origin when the direction of migration was reversed.  相似文献   

8.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   

9.
We have used a novel filter hybridization approach to detect and map the herpes simplex virus (HSV) DNA sequences which are present in four HSV thymidine kinase (HSVtk+)-transformed cell lines which were derived by exposure of thymidine kinase negative (tk-) mouse cells to UV light-irradiated HSV type 2 (HSV-2). In addition, we have mapped the HSV-1 DNA sequences which are present in two HSV-1tk+-transformed cell lines produced by transfection of tk- mouse cells with sheared HSV-1 DNA. The results of these studies can be summarized as follows. (i) The only HSV DNA sequences which were common to all HSVtk+-transformed cells were those located between map coordinates 0.28 and 0.32. Thus, this region contains all of the viral DNA sequences which are necessary for the expression of HSV-mediated tk transformation. (ii) Many of the cell lines also contained variable amounts of non-tk gene viral DNA sequences located between map coordinates 0.11 to 0.57 and 0.82 to 1.00, suggesting that incorporation of the viral DNA sequences located between these map coordinates is a relatively random event. (iii) The viral DNA sequences located between map coordinates 0 to 0.11 and 0.57 to 0.82 were uniformly absent from all of the HSVtk+ cell lines tested, suggesting that there is a strong negative selective pressure against incorporation of these viral DNA sequences.  相似文献   

10.
We have previously shown that adenovirus recombinants expressing functional ICP0 reactivate latent herpes simplex virus type 2 (HSV-2) in an in vitro latency system. This study demonstrated that ICP0, independent of other HSV gene products, is sufficient to reactivate latent HSV-2 in this in vitro system. To assess the effects of defined mutations in the sequence encoding ICP0 (IE-0) on reactivation, seven in-frame insertion and three in-frame deletion mutants were moved into an adenovirus expression vector. Each recombinant directed the synthesis of stable ICP0 of the correct size. The transactivation activity of the mutated sequences in these recombinants was similar to that when they were tested in plasmids. When these recombinants were examined for their ability to reactivate in the in vitro latency system, mutants with dramatic defects in transactivation (Ad-0/125, Ad-0/89, Ad-0/2/7, and Ad-0/88/93) were unable to reactivate latent HSV-2 independent of the multiplicity of infection. An exception to this correlation was the finding that Ad-0/89, which transactivated poorly, was able to reactivate latent virus after prolonged incubation whereas other transactivation-deficient mutants could not. Moreover, the presence of ICP4 did not compensate for the inability of any of the recombinants tested to reactivate HSV-2. These results show that (i) the transactivation domains of ICP0 are also used in reactivation, (ii) the presence of another essential HSV regulatory protein ICP4 does not alter the pattern of reactivation by ICP0, and (iii) mutations in some regions of IE-0 previously shown to affect viral growth and plaque formation did not alter its ability to reactivate in this in vitro system.  相似文献   

11.
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells.  相似文献   

12.
Human cytotoxic T cell (CTL) clones specific for herpes simplex virus (HSV) type 1- and type 2-infected cells were generated and were analyzed with regard to the viral glycoproteins they recognize on autologous HSV-infected cells. By use of target cells infected with wild-type HSV strains, a gC deletion mutant of HSV-1, and HSV-1 X HSV-2 intertypic recombinants, some HSV-1-specific CTL clones were found to be directed against L region-encoded gA/B-1, and others against S region-encoded glycoproteins (gD-1 or gE-1). Some HSV-2-specific clones were found to be directed against L region-encoded gC-2, whereas others were directed against S region-encoded glycoproteins (gD-2, gE-2, or gG). These findings provide direct evidence that several HSV glycoproteins that are expressed on the surface of HSV-infected cells serve as recognition structures for human HSV-specific CTL.  相似文献   

13.
D N Everly  Jr  G S Read 《Journal of virology》1997,71(10):7157-7166
During lytic herpes simplex virus (HSV) infections, the half-lives of host and viral mRNAs are regulated by the HSV virion host shutoff (Vhs) protein (UL41). The sequences of the UL41 polypeptides of HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical. In spite of this similarity, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. To examine type-specific differences in Vhs function, we compared the Vhs activities of UL41 alleles from HSV-1(KOS) and HSV-2(333) by assaying the ability of a transfected UL41 allele to inhibit expression of a cotransfected reporter gene. Both HSV-1 and HSV-2 alleles inhibited reporter gene expression over a range of vhs DNA concentrations. However, 40-fold less of the HSV-2 allele was required to yield the same level of inhibition as HSV-1, indicating that it is significantly more potent. Examination of chimeric UL41 alleles containing various combinations of HSV-1 and HSV-2 sequences identified three regions of the 333 polypeptide which increase the activity of KOS when substituted for the corresponding amino acids of the KOS protein. These are separated by two regions which have no effect on KOS activity, even though they contain 43 of the 74 amino acid differences between the parental alleles. In addition, alleles encoding a full-length KOS polypeptide with a 32-amino-acid N-terminal extension retain considerable activity. The results begin to identify which amino acid differences are responsible for type-specific differences in Vhs activity.  相似文献   

14.
15.
16.
17.
We present the locations of the cleavage sites for the BamI, KpnI, and SalI restriction endonucleases within the DNA molecules of herpes simplex virus type 1 (HSV-1) strains Justin and F. These restriction enzymes cleave the HSV-1 DNA at many sites, producing relatively small fragments which should prove useful in future studies of HSV-1 gene structure and function. The mapping data revealed the occurrence of heterogeneity within three regions of the viral genome including (i) the region spanning map coordinates 0.74--0.76, (ii) the ends of the large (L) DNA component, and (iii) the junction between the large (L) and the small (S) components. The heterogeneity in the ends of L and the S-L junctions of HSV-1 (Justin) and HSV-1 (F) DNAs was grossly similar to that previously reported to occur in the ends of L and the S-L junctions of the HSV-1 (KOS) DNA (M. J. Wagner and W. C. Summers, J. Virol. 27:374--387, 1978). Thus, cleavage of these regions with restriction endonucleases yielded sets of minor fragments differing in size by constant increments. However, the various strains of HSV-1 differed with respect to the numbers, size increments, and relative molarities of the various minor fragments, suggesting that the parameters of the heterogeneity are inherited in the structural makeup of the HSV-1 genome. The strain dependence of the pattern of heterogeneity can be most easily explained in terms of variable sizes of the terminally reiterated a sequence, contained in the DNA molecules of these three strains of HSV-1.  相似文献   

18.
We report the use of herpes simplex virus type 1 (HSV-1)- and HSV-2-infected cell polypeptides (ICPs) separated by electrophoresis in polyacrylamide gels and transferred to nitrocellulose to (i) detect monoclonal antibodies to viral polypeptides and to (ii) study the properties of the proteins with the monoclonal antibodies. Our results were as follows. (i) When the antigens were electrophoretically separated in denaturing gels and then immobilized on nitrocellulose strips, we detected a greater diversity of monoclonal antibodies to viral proteins than when we used the technique of immune precipitation of soluble, nondenatured viral antigens. The primary advantage of the technique is in the detection of nonprecipitating antibody and of antibody to poorly soluble antigens not available for reaction in preparations cleared by high-speed centrifugation before immune reaction. (ii) Studies of the viral polypeptides reactive with three monoclonal antibodies indicated that the technique can be used to investigate several properties of the antigens. Specifically, monoclonal antibody to ICP 4 confirmed the accumulation of viral protein in the nucleus and the mapping of the gene in the S component. The results showed, however, that HSV-1 and HSV-2 ICP 4 do have common antigenic determinants. The reaction of a nonprecipitating monoclonal antibody with electrophoretically separated, immobilized polypeptides contained in cytoplasmic and nuclear fractions, those chemically deglycosylated, or those specified by specific HSV-1 x HSV-2 intertypic recombinants identified the antigens reactive with the second monoclonal antibody as various forms of glycoprotein gC. Of particular interest was a set of four antigens, 39,000 to 46,500 in apparent molecular weight, reactive with each of several monoclonal antibodies. These studies showed that two polypeptides partition in the cytoplasm and two in the nucleus and that all comap with the previously mapped ICPs 35 and 37 in the region of the genome defined by the viral thymidine kinase gene on the left and the glycoprotein gA/B gene on the right. Unlike ICP 4 and gC, the four polypeptides are linked by intermolecular bisulfide bonds, inasmuch as the polypeptides were not at the expected locations upon denaturation and electrophoresis in the absence of reducing agents.  相似文献   

19.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

20.
Structural features of ribonucleotide reductase   总被引:17,自引:0,他引:17  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号