首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum-free mouse embryo cells, cultured in basal nutrient medium supplemented with insulin, transferrin, epidermal growth factor, fibronectin, and high-density lipoprotein, do not exhibit growth crisis, lack detectable chromosomal aberrations, are nontumorigenic in vivo, are dependent on epidermal growth factor for survival, and are growth inhibited by serum or platelet-free plasma. These cells after transfection with the human Ha-ras or rat neu oncogenes no longer required epidermal growth factor for survival, were tumorigenic in vivo, and also proliferated in serum-containing medium. Autocrine activity capable of replacing epidermal growth factor was detected in conditioned medium from ras-transformed cultures, but little such activity was detected in medium from neu-transformed cultures. In addition, the capability of ras or neu-transformed cells to grow in serum-containing medium could not be mimicked in untransformed cells by the addition of growth factors or conditioned medium from transformed cells. These results suggest that the known structural similarity of the neu gene product to the EGF receptor is also reflected in a functional similarity by which the mutationally activated neu protein can replace the ligand-activated EGF receptor. These results also suggest that the ability of ras- and neu-transformed cells to escape the effect of the inhibitory serum activity is a nonautocrine property distinct from the acquisition of EGF autonomy.  相似文献   

2.
I Kovesdi  R Reichel  J R Nevins 《Cell》1986,45(2):219-228
  相似文献   

3.
Exposure of neu-oncogene-transformed NIH 3T3 cells to monoclonal antibodies reactive with the neu gene product, p185, results in the rapid and reversible loss of both cell-surface and total cellular p185. Although not directly cytotoxic, monoclonal anti-p185 antibody treatment causes neu-transformed NIH 3T3 cells to revert to a nontransformed phenotype, as determined by anchorage-independent growth. Isotype matched control antibodies of an unrelated specificity do not affect p185 levels or colony formation in soft agar by neu-transformed NIH 3T3 cells. Soft agar colony formation by NIH 3T3 cells transformed by ras oncogenes is not affected by anti-p185 antibody treatment. Anchorage-independent growth of cells from the ethylnitrosourea-induced rat neuroblastoma line in which neu was originally detected by DNA transfection is also inhibited in the presence of anti-p185 monoclonal antibodies. Collectively, these results suggest that p185 is required to maintain transformation induced by the neu oncogene.  相似文献   

4.
腺病毒 5型早期区 1 A( Ad5E1 A)基因是新近发现的一个肿瘤抑制基因 .其产物 E1 A蛋白是多功能转录因子 ,它能从正、负 2个途径调控多种细胞基因的转录 ,具有降低体内致瘤性及抗转移等活性 .为了探讨 E1 A基因对代表肺癌癌前病变的永生化人支气管上皮细胞的生长是否具有抑制作用 ,构建了在真核细胞高表达 E1 A基因的重组质粒 p CEP4- E1 A.通过脂质体介导将 E1 A基因转入永生化人支气管上皮细胞第 1 68代 ( MP1 68)中 ,经潮霉素筛选 ,获得稳定表达 E1 A的永生化人支气管上皮细胞 ( MP1 68- E1 A) .结果表明 :E1 A基因的稳定表达抑制了 HER- 2 / neu基因的表达 .转染细胞 ( MP1 68- E1 A)回复扁平形态、恢复细胞生长的接触性抑制 ,细胞群体生长缓慢 (倍增时间是 MP1 68- vect细胞的 1 .41倍 ) ,细胞周期 G1期阻滞并出现凋亡 ,软琼脂集落形成抑制率达73.86% .结果说明 E1 A基因的稳定表达明显抑制了永生化人支气管上皮细胞的生长 .该作用可能与 E1 A抑制 HER- 2 / neu基因的表达及诱导永生化人支气管上皮细胞凋亡有关 .  相似文献   

5.
6.
V Band  S Dalal  L Delmolino    E J Androphy 《The EMBO journal》1993,12(5):1847-1852
Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo.  相似文献   

7.
8.
9.
The improvements to adenovirus necessary for an optimal gene transfer vector include the removal of virus gene expression in transduced cells, increased transgene capacity, complete replication incompetence, and elimination of replication-competent virus that can be produced during the growth of first-generation adenovirus vectors. To achieve these aims, we have developed a vector-cell line system for complete functional complementation of both adenovirus early region 1 (E1) and E4. A library of cell lines that efficiently complement both E1 and E4 was constructed by transforming 293 cells with an inducible E4-ORF6 expression cassette. These 293-ORF6 cell lines were used to construct and propagate viruses with E1 and E4 deleted. While the construction and propagation of AdRSV beta gal.11 (an E1-/E4- vector engineered to contain a deletion of the entire E4 coding region) were possible in 293-ORF6 cells, the yield of purified virus was depressed approximately 30-fold compared with that of E1- vectors. The debilitation in AdRSV beta gal.11 vector growth was found to correlate with reduced fiber protein and mRNA accumulation. AdCFTR.11A, a modified E1-/E4- vector with a spacer sequence placed between late region 5 and the right inverted terminal repeat, efficiently expressed fiber and grew with the same kinetic profile and virus yield as did E1- vectors. Moreover, purified AdCFTR.11A yields were equivalent to E1- vector levels. Since no overlapping sequences exist in the E4 regions of E1-/E4- vectors and 293-ORF6 cell lines, replication-competent virus cannot be generated by homologous recombination. In addition, these second-generation E1-/E4- vectors have increased transgene capacity and have been rendered virus replication incompetent outside of the new complementing cell lines.  相似文献   

10.
11.
12.
13.
Expression of the adenovirus serotype 5 (Ad5) E1A oncogene sensitizes cells to apoptosis by TNF-alpha and Fas-ligand. Because TNF-related apoptosis-inducing ligand (TRAIL) kills cells in a similar manner as TNF-alpha and Fas ligand, we asked whether E1A expression might sensitize cells to lysis by TRAIL. To test this hypothesis, we examined TRAIL-induced killing of human melanoma (A2058) or fibrosarcoma (H4) cells that expressed E1A following either infection with Ad5 or stable transfection with Ad5-E1A. E1A-transfected A2058 (A2058-E1A) or H4 (H4-E1A) cells were highly sensitive to TRAIL-induced killing, but Ad5-infected cells expressing equally high levels of E1A protein remained resistant to TRAIL. Infection of A2058-E1A cells with Ad5 reduced their sensitivity to TRAIL-dependent killing. Therefore, viral gene products expressed following infection with Ad5 inhibited the sensitivity to TRAIL-induced killing conferred by transfection with E1A. E1B and E3 gene products have been shown to inhibit TNF-alpha- and Fas-dependent killing. The effect of these gene products on TRAIL-dependent killing was examined by using Ad5-mutants that did not express either the E3 (H5dl327) or E1B-19K (H5dl250) coding regions. A2058 cells infected with H5dl327 were susceptible to TRAIL-dependent killing. Furthermore, TRAIL-dependent killing of A2058-E1A cells was not inhibited by infection with H5dl327. Infection with H5dl250 sensitized A2058 cells to TRAIL-induced killing, but considerably less than H5dl327-infection. In summary, expression of Ad5-E1A gene products sensitizes cells to TRAIL-dependent killing, whereas E3 gene products, and to a lesser extent E1B-19K, inhibit this effect.  相似文献   

14.
While the products of the type 5 adenovirus E1A and E1B genes can initiate pathways leading to a transformed rodent cell, little is known about how the rate of viral early gene expression influences the efficiency of this process. An adenovirus mutant [E1a(r) virus] that expresses its viral E1A and E1B genes at as much as a 100-fold-reduced rate relative to wild-type virus in infected CREF or HeLa cells transforms CREF cells at an 8-fold-higher efficiency than wild-type virus. Additional studies show that the reduction in viral E1A gene expression is solely responsible for this transformation phenotype, and at this low rate of viral E1A gene expression both E1A gene products must be expressed. Unlike previously characterized viruses which transform CREF cells at frequencies greater than wild-type virus, the foci obtained following E1a(r) virus infection were indistinguishable from those arising from wild-type virus by several criteria (morphological characteristics and anchorage-independent growth). Surprisingly, an analysis of viral early gene expression from a panel of wild-type- and E1a(r) virus-transformed CREF cell lines showed similar average rates of both viral E1A and E1B gene expression. By using an adenovirus-transformed cell line that is cold-sensitive for maintenance of the transformed cell phenotype, we show that both wild-type and the E1a(r) viruses can transform these cells at equally high efficiencies at the nonpermissive temperature of 32 degrees C. Our findings suggest that the process leading to a fully transformed cell involves multiple stages, with an early stage being facilitated by a reduced rate of viral E1A gene expression.  相似文献   

15.
The E1A gene of highly oncogenic type 12 adenovirus (Ad12) possesses a segment unique to this serotype and comprising 60 base pairs contiguous with and separating conserved regions 2 and 3 in the gene. A similar but slightly longer segment is also present in the E1A gene of highly oncogenic simian adenovirus type 7 (D. Kimelman, J. S. Miller, D. Porter, and B. E. Roberts, J. Virol. 53:399-409, 1985). This segment is missing entirely from the E1A gene of type 5 adenovirus, which is nononcogenic. To test the hypothesis that this unique separating or "spacer" region influences the oncogenicity of Ad12, we constructed ClaI and SmaI restriction sites on either side of it, which allowed reciprocal exchange between this and the equivalent cassette from type 5 adenovirus E1A, bounded by the same restriction sites intrinsic to that gene. The resultant Ad12-based chimeric viruses, ch702 and ch704, in which the spacer region is replaced with (in-frame) type 5 sequence, grow normally on human A549 cells and display wild-type transformation frequencies on baby rat and mouse kidney cells. In contrast, the oncogenic capacity of these chimeric viruses, as measured by tumor induction following virus inoculation in Hooded Lister rats, is greatly reduced. Likewise, cells transformed by ch702 and ch704 display reduced tumorigenicity compared with wild-type transformants in syngeneic rats. These results, coupled with recent preliminary tests using a mutant with a point mutation in this region, support the view that the unique spacer region of type 12 is an oncogenic determinant of this virus.  相似文献   

16.
17.
18.
19.
We have compared the capacities of the E1A regions of nononcogenic adenovirus type 5 (Ad5) and highly oncogenic Ad12 to cooperate with the EJ bladder carcinoma Ha-ras-1 oncogene in the transformation of primary baby rat kidney cells. Both E1A regions, when cotransfected with the Ha-ras oncogene, transformed the primary cells with a low frequency. Ad5 E1A plus Ha-ras-transformed cells differed in phenotype from cells transformed by Ad12 E1A plus Ha-ras. The cells expressing Ad5 E1A appeared highly transformed and practically failed to adhere to plastic. This phenotype may be due to the virtually complete absence of fibronectin gene expression in these cells. In contrast, the cells expressing Ad12 E1A were flatter and adhered to plastic, whereas fibronectin gene expression was reduced but not absent. The oncogenic potential of the two types of E1A plus ras-transformed cells was tested by their injection into both athymic nude mice and weanling syngeneic rats. The Ad5 E1A plus ras-transformed cells were found to be highly oncogenic in both animal species, whereas the Ad12 E1A plus ras-transformed cells were only weakly oncogenic in both syngeneic rats and nude mice. The difference in oncogenic potential of the Ad5 E1A plus ras- and the Ad12 E1A plus ras-transformed cells is discussed in terms of the different capacities of the Ad5 and Ad12 E1A-encoded proteins to modulate cellular gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号