首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified an activity in rabbit reticulocyte lysate as peptidyl-tRNA hydrolase, based upon its ability to hydrolyze native reticulocyte peptidyl-tRNA, isolated from polyribosomes, and N-acylaminoacyl-tRNA, and its inability to hydrolyze aminoacyl-tRNA, precisely the same substrate specificity previously reported for peptidyl-tRNA hydrolase from bacteria or yeast. The physiological role of the reticulocyte enzyme may be to hydrolyze and recycle peptidyl-tRNA that has dissociated prematurely from elongating ribosomes, as suggested for the bacterial and yeast enzymes, since reticulocyte peptidyl-tRNA hydrolase is completely incapable of hydrolyzing peptidyl-tRNA that is still bound to polyribosomes. We have purified reticulocyte peptidyl-tRNA hydrolase over 5,000-fold from the postribosomal supernatant with a yield of 14%. The purified product shows a 72-kDa band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis that has co-purified with enzyme activity and comprises about 90% of the total stained protein, strongly suggesting that the 72-kDa protein is the enzyme. Sucrose density gradient analysis indicates an apparent molecular mass for the native enzyme of 65 kDa, implying that it is a single polypeptide chain. The enzyme is almost completely inactive in the absence of a divalent cation: Mg2+ (1-2 mM) promotes activity best, Mn2+ is partly effective, and Ca2+ and spermidine are ineffective. The hydrolase shows a Km of 0.60 microM and Vmax of 7.1 nmol/min/mg with reticulocyte peptidyl-tRNA, a Km of 60 nM and Vmax of 14 nmol/min/mg with Escherichia coli fMet-tRNA(fMet), and a Km of 100 nM and Vmax of 2.2 nmol/min/mg with yeast N-acetyl-Phe-tRNA(Phe). The enzyme has a pH optimum of 7.0-7.25, it is inactivated by heat (60 degrees C for 5 min), and its activity is almost completely inhibited by pretreatment with N-ethylmaleimide or incubation with 20 mM phosphate. The fact that the enzyme hydrolyzes E. coli but not yeast or reticulocyte fMet-tRNA(fMet) may be explained, at least in part, by structural similarities between prokaryotic tRNA(fMet) and eukaryotic elongator tRNA that are not shared by eukaryotic tRNA(fMet).  相似文献   

2.
Dihydroflavin mononucleotide (FMNH2) and tetrahydrobiopterin (BH4) serve as cofactors for indoleamine 2,3-dioxygenase isolated from mouse epididymis. The optimal pH was between 7 and 8, and FMNH2-dependent activity was 4 to 5-fold higher than activity with methylene blue as the electron donor. Using FMNH2 with a FMN reductase system, the enzyme exhibited higher efficiency and specificity for L-Trp (an apparent Km of 1 X 10(-5)M and an apparent Vmax of 182 nmol/min/mg of protein). The apparent Km and Vmax for D-Trp were 6.2 X 10(-5)M and 31 nmole/min/mg, respectively. Consequently, these observations appear to present the first evidence for a flavin-dependent mammalian dioxygenase.  相似文献   

3.
S-Adenosylhomocysteine hydrolase [EC 3.3.1.1] was purified to electrophoretic homogeneity from mastocytoma P-815 cells. The purified enzyme had a molecular weight of 190,000, as estimated by Sephadex G-200 chromatography, and a monomer molecular weight of 45,000, as determined by polyacrylamide gel electrophoresis in the presence of SDS. The Km value for adenosine was 0.29 microM and the Vmax value 4.5 mumol S-adenosylhomocysteine X min-1 X mg-1 in the synthetic reaction, while the Km value for S-adenosylhomocysteine was 0.77 microM and the Vmax 0.48 mumol adenosine X min-1 X mg-1 in the hydrolytic reaction. The purified enzyme also had one binding site for adenosine (KD = 2.61 X 10(-7) M) and one for cAMP (KD = 1.6 X 10(-7) M). Using rabbit antiserum raised against the purified enzyme, it was shown that the enzyme activity and enzyme synthesis fluctuated during the cell cycle of mastocytoma cells, reaching the maximum levels as the cells changed from the G1/S phase to the G2 phase.  相似文献   

4.
We have characterized the GTPase activity of the Ni-like guanine-nucleotide-binding regulatory protein in rabbit neutrophil plasma membranes. The low Km (3.64 +/- 0.87 X 10(-7) M) GTPase copurified with the formyl peptide receptor in the plasma membrane fraction obtained by discontinuous sucrose density gradient centrifugation. The Vmax (23.9 +/- 2.91 pmol/mg/min) and Km of the unstimulated enzyme were similar to those reported for Ni in other cell types. The activity of the unstimulated enzyme was both magnesium and sodium dependent and linear over the first 4 min of the assay. The chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP), C5a, and leukotriene B4 (LTB4) stimulated the GTPase in purified neutrophil plasma membrane preparations, whereas other secretagogues, such as A23187 and PMA, were without effect. Lineweaver-Burk analysis showed an fMLP-induced increase in Vmax (31.94 +/- 4.80 pmol/mg/min) (33.1 +/- 9.5%) but not in Km. The dose-response curve for fMLP stimulation showed an ED50 of 4.1 +/- 1.0 X 10(-8) M and an overall 22.2 +/- 3.1% maximal stimulation. C5a (30 micrograms/ml) increased the activity of the GTPase 21.3 +/- 5.7% and 10(-7) M LTB4 produced a 32.2 +/- 5.4% increase. Activated pertussis toxin treatment of neutrophil plasma membranes inhibited by 72.5 +/- 14.3% the stimulation of GTPase activity induced by fMLP; however, activated cholera toxin had no effect on the inhibition of fMLP stimulation, suggesting a direct role for an Ni-like protein in the coupling process. In contrast to the lack of inhibition of fMLP stimulation by activated cholera toxin treatment of plasma membranes, both pertussis toxin and to a lesser extent cholera toxin treatment reduced fMLP, C5a, and LTB4 stimulation of the GTPase in sonicates prepared from pretreated whole cells. Pertussis toxin inhibited fMLP stimulation of the GTPase by 75 +/- 7%, C5a stimulation was inhibited by 83 +/- 13%, and LTB4 stimulation was inhibited completely. Sonicates prepared from neutrophils treated similarly with cholera toxin showed a smaller inhibition of GTPase activity (50 +/- 4% and 14 +/- 9% for fMLP and LTB4, respectively) with the exception of C5a, where CT inhibition (81 +/- 32%) equaled pertussis toxin inhibition. Similarly, pertussis toxin completely inhibited the release of the granule enzyme N-acetyl-glucosaminidase by all three chemoattractants, whereas cholera toxin, except with C5a stimulation, had little or no effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

6.
The effects of 5,10-secoestra-4,5-diene-3,10,17-trione (Compound I) and 5,10-seco-19-norpregna-4,5-diene,3,10,20-trione (Compound II) on the 5 alpha-reductase activity and on the androgen receptors of normal human sex skin fibroblasts were investigated. The Vmax and Km of the transformation of testosterone to 5 alpha-reduced products was 387 pg/microgram DNA/30 min and 234 X 10(-9)M, respectively. When the inhibitors were introduced in the assay, the 5 alpha-reductase activity was markedly reduced, Compound I being a less potent inhibitor than Compound II. At 15 min, the inhibition was greater than at 30 and 60 min. The Ki for Compound I was 1.60 x 10(-6)M with a Vmax of 83 to 553 pg/microgram DNA/30 min. For Compound II, the Ki was 0.53 x 10(-6)M with a Vmax of 70 to 340 pg/microgram DNA/30 min. The inhibition was of the noncompetitive type. Studies with androgen receptors showed that Compound I had a lower affinity for the receptors than Compound II. The ID50 for 3H-DHT and 3H-T for Compound I were 42.9 x 10(-7)M and 8.6 x 10(-7)M, respectively, whereas for Compound II, they were 10.6 x 10(-7)M and 4.8 x 10(-7)M.  相似文献   

7.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 X 10(-8) M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5 X 10(-8) M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+. Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+. Preincubation of enzyme with 15 microM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 X 10(-7) M propranolol and 5 X 10(-8) M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 X 10(-5) M coenzyme A in combination with 5 X 10(-8) M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

8.
Subunit interaction: A molecular basis of heterosis   总被引:2,自引:0,他引:2  
Acid phosphatase, a dimeric enzyme, in Drosophila malerkotliana was studied in isogenic flies to explore the molecular basis of heterosis. As the enzyme activity in heterozygotes is 34% more than that in the better parent (S/S), heterosis is indicated. Vmax, Km, and Ki values are 14.60, 3.6 X 10(-4) M, and 0.45 X 10(-4) M, respectively, for the enzyme from F/S flies and 11.80, 4.0 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the enzyme from S/S flies. Thus heterosis for enzyme activity results from a better enzyme in F/S flies. The higher efficiency and better quality of the enzyme in F/S flies were traced to the heterodimeric allozyme, present only in heterozygotes. Enzyme activity, Vmax, Km, and Ki values are 0.739, 42.1; 3.6 X 10(-4) M, and 0.50 X 10(-4) M, respectively, for the heterodimeric and 0.513, 36.8; 4.1 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the better parental homodimeric allozyme. On an equimolar basis the enzyme activity of the heterodimer is 44% higher than that of the better homodimer. The better performance of the heterodimer is probably a reflection of superior conformation resulting from interaction between component subunits (F and S polypeptides).  相似文献   

9.
A procedure for isolation and purification of restriction endonuclease Sac I from Streptomyces achromogenes ATCC 12767 is proposed. It allows to obtain an electrophoretically homogeneous enzyme preparation with the purification degree 1097 and the enzyme yield by activity 3.7%. The molecular weight of SacI was found to be 52,000 +/- 5,000 D, and isoelectric point 6.2. The enzyme consists of two subunits, which was found by polyacrylamide gel electrophoresis under denaturing conditions. Km and Vmax values were determined for the enzymatic reaction; they are equal to 4.6 X 10(-9) M and 9.19 X 10(-10) M/min, respectively.  相似文献   

10.
A biotin-containing hexapeptide Ac-Glu-Ala-Met-Bct-Met-Met (1) that represents the local biotin-containing site of Escherichia coli acetyl-CoA carboxylase has been prepared by the solid phase method. Peptide 1 is carboxylated by the biotin carboxylase subunit dimer of E. coli acetyl-CoA carboxylase with the following kinetic parameters; Km 12 mM, Vmax 2.8 microM X min-1. These compare with the parameters for biotin of Km 214 mM and Vmax 28 microM X min -1. Hence, the overall reactivity (Vmax/Km) of 1 is 1.8 times greater than that of free biotin. When all methionines in 1 are replaced by alanine, the resulting peptide (2) retains a similar binding ability but with a much decreased Vmax. It was also found that peptide 3, which carries an N epsilon-benzyloxycarbonyllysine in place of biocytin in 1, decreases the Km of biotin threefold.  相似文献   

11.
The properties of two unusual substrates of calf spleen purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1), 7-methylguanosine and 7-methylinosine, are described. The corresponding bases, 7-methylguanine and 7-methylhypoxanthine, are neither substrates in the reverse, synthetic reaction, nor inhibitors of the phosphorolysis reaction. Both nucleosides exhibit fluorescence, which disappears on cleavage of the glycosidic bond, providing a new convenient procedure for continuous fluorimetric assay of enzymatic activity. For 7-methylguanosine at neutral pH and 25 degrees C, Vmax = 3.3 mumol/min per unit enzyme and Km = 14.7 microM, so that Vmax/Km = 22 X 10(-2)/min per unit as compared to 8 X 10(-2) for the commonly used substrate inosine. The permissible initial substrate concentration range is 5-100 microM. Enzyme activity may also be monitored spectrophotometrically. For 7-methylinosine, Vmax/Km is much lower, 2.4 X 10(-2), but its 10-fold higher fluorescence partially compensates for this, and permits the use of initial substrate concentrations in the range 1-500 microM. At neutral pH both substrates are mixtures of cationic and zwitterionic forms. Measurements of pH-dependence of kinetic constants indicated that the cationic forms are the preferred substrates, whereas the monoanion of inosine appears to be almost as good a substrate as the neutral form. With 7-methylguanosine as substrate, and monitoring of activity fluorimetrically and spectrophotometrically, inhibition constants were measured for several known inhibitors, and the results compared with those obtained with inosine as substrate, and with results reported for the enzyme from other sources.  相似文献   

12.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

13.
Rabbit liver tRNA nucleotidyltransferase catalyzes the incorporation of AMP and CMP into the model acceptor substrate, cytidine. The apparent Km for cytidine in this reaction is about 80 to 90 mM which is more than 10(4) greater than the Km values for the natural substrates, tRNA lacking the terminal AMP (tRNA-C-C) and tRNA lacking the terminal pCpA (tRNA-C). The Vmax values for the model reaction are only 5% and 2% of those for the reaction with the natural tRNA substrates. Addition of the tRNA fragments, tRNA lacking the terminal XpCpCpA sequence (tRNA-(X - 1)p) and tRNA lacking the terminal CpCpA (tRNA-Xp), greatly stimulates the rate of nucleotide incorporation into cytidine. In the case of CMP incorporation into cytidine, tRNA-Xp stimulates the reaction about 60-fold, to a rate similar to that of the normal reaction with tRNA-C. The tRNA fragment has no effect on the apparent Km of either cytidine or CTP, but only alters the Vmax of the reaction. Stimulation of the model reactions is maximal with tRNA fragments of specific chain lengths. These results provide direct evidence that the nonreacting regions of a substrate molecule play an important role in the catalytic efficiency of an enzyme.  相似文献   

14.
A new fluorogenic substrate for the pyridoxal 5'-phosphate-dependent enzyme tryptophanase is described. L-Serine, which is linked to 7-amino-4-methylcoumarin through an O-carbamoyl tether, serves as a substrate for the enzyme. The released moiety, 7-amino-4-methylcoumarin (AMC), can be detected by either absorbance (355 nm) or fluorescence (excitation 365 nm/emission 440 nm). Kinetic constants were measured using each of these techniques: Km = 85 +/- 20 microM, Vmax = 2.9 +/- 0.4 mumol/min/mg (fluorescence) and Km = 129 +/- 21 microM, Vmax = 3.1 +/- 0.3 mumol/min/mg (absorbance). The Vmax for serine-AMC-carbamate is approximately 1.9 times faster than that of the natural substrate, tryptophan. Using fluorescence detection, solutions containing 10(-3) units of activity could be routinely assayed.  相似文献   

15.
The mechanism of bradykinin-potentiating activity of [des-Proline3]-bradykinin, a kinin originally generated from human plasma protein by trypsin, was studied in terms of its inhibitory actions on angiotensin-converting enzyme and kininase II prepared from rat lung. The results were compared with those obtained with Captopril. [Des-Pro3]-bradykinin was found to have a potent inhibitory action against angiotensin-converting enzyme with a K1 of 4.5 X 10(-12) M, which is approximately 7 times more potent than Captopril. It was also inhibitory to kininase II with a Ki of 4 X 10(-11) M, which is approximately 2,300-fold more potent than Captopril. The pattern of inhibition was purely competitive with increased apparent Km but no change in apparent Vmax for both angiotensin-converting enzyme and kininase II. This is in contrast to Captopril, which showed a mixed competitive and non-competitive type of inhibition with increased apparent Km and decreased Vmax for both enzymes. Such a potent inhibitory activity of [des-Pro3]-bradykinin or Arg-Pro-Gly-Phe-Ser-Pro-Phe-Arg is noteworthy, and accordingly we propose the name "converstatin" for this peptide.  相似文献   

16.
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.  相似文献   

17.
Treatment of rabbit spermatozoa with 50mM-MgCl2 removes the plasma and the outer acrosomal membranes. Subsequent treatment with the detergents Hyamine 2389 and Triton X-100 solubilizes spermatozoal neuraminidase bound to the inner acrosomal membrane. The enzyme was further purified by DEAE-cellulose, Sephadex G-150 and Bio-Gel P-300 column chromato. The enzyme showed a single major band, with the possibility of some minor contaminants, on disc-gel electrophoresis. It had a specific activity of 0.37 micronmal of sialic acid released/min per mg with purified boar Cowper's-gland mucin as the substrate. The enzyme had marked specificity for 2 leads to 6'-linked sialic acid in glycoproteins. The Km of spermatozoal neuraminidase was 1.72 X 10(-6)M with Cowper's-gland mucin, 1.17 X 10(-5)M with fetuin and 8.8 X 10(-4)M with sialyl-lactose as a substrates. The Vmax. was 0.112 micronmol/min per mg with the Cowper's-gland mucin, 0.071 micronmol/min per mg with fetuin and 0.033 micronmol/min per mg with sialyl-lactose as substrate. The enzyme hydrolysed sheep submaxillary-gland mucin as readily as the Cowper's-gland mucin. The optimum of enzyme activity was at pH 5.0 on the Cowper's-gland mucin and at pH4.3 on sialyl-lactose. The enzyme activity was unaffected by 20mM-Na+ and-K+, but was inhibited by 20mM-Ca2+,-Mn2+,-Co2+ and -Cu2+. The enzyme was unstable in dilute solutions, but could be stored indefinitely freeze-dried at --20 degrees C.  相似文献   

18.
Exonuclease A was isolated from bacteriophage T4-infected cells of E. coli. The molecular mass of the enzyme is approximately 42,000 Da, pH optimum is 7-8.5, pI is 4.05. The enzyme activity depends on Mg2+, the optimal concentration of Mg2+ being 1-5 mM. The enzyme splits one- and two-helical DNA in the direction of 3'----5' and is a deoxyribonuclease splitting 5'-deoxynucleotides. The enzyme shows a practically equal affinity for one and two-helical DNA. The Km value for one- and two-helical DNA is 10 +/- 1 and 11 +/- 1 pmole of chain DNA, respectively. The Vmax value for one- and two-helical DNA is 61 +/- 5 and 45 +/- 5 pmole of nucleotides per min. Exonuclease A may be used for preparing substrates for DNA-polymerase T4 and Klenow fragment, i.e., during labeling of DNA at 3'-ends.  相似文献   

19.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

20.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号