首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.  相似文献   

2.
We report the identification of 17 box C/D fibrillarin-associated small nucleolar RNAs (snoRNAs) from the ancient eukaryote, Trypanosoma brucei. To systematically isolate and characterize these snoRNAs, the T. brucei cDNA for the box C/D snoRNA common protein, fibrillarin, was cloned and polyclonal antibodies to the recombinant fibrillarin protein were generated in rabbits. Immunoprecipitations from T. brucei extracts with the anti-fibrillarin antibodies indicated that this trypanosomatid has at least 30 fibrillarin-associated snoRNAs. We have sequenced seventeen of them and designated them TBR for T. brucei RNA 1-17. All of them bear conserved box C, D, C', and D' elements, a hallmark of fibrillarin-associated snoRNAs in eukaryotes. Fourteen of them are novel T. brucei snoRNAs. Fifteen bear potential guide regions to mature rRNAs suggesting that they are involved in 2'-O-ribose methylation. Indeed, eight ribose methylations have been mapped in the rRNA at sites predicted by the snoRNA sequences. Comparative genomics indicates that six of the seventeen are the first trypanosome homologs of known yeast and vertebrate methylation guide snoRNAs. Our results indicate that T. brucei has many fibrillarin-associated box C/D snoRNAs with roles in 2'-O-ribose methylation of rRNA and that the mechanism for targeting the nucleotide to be methylated at the fifth nucleotide upstream of box D or D' originated in early eukaryotes.  相似文献   

3.
Vam3p, a syntaxin-like SNARE protein involved in yeast vacuole fusion, is composed of a three-helical N-terminal domain, a canonical SNARE motif, and a C-terminal transmembrane region (TMR). Surprisingly, we find that the N-terminal domain of Vam3p is not essential for fusion, although analogous domains in other syntaxins are indispensible for fusion and/or protein-protein interactions. In contrast to the N-terminal domain, mutations in the SNARE motif of Vam3p or replacement of the SNARE motif of Vam3p with the SNARE motif from other syntaxins inhibited fusion. Furthermore, the precise distance between the SNARE motif and the TMR was critical for fusion. Insertion of only three residues after the SNARE motif significantly impaired fusion and insertion of 12 residues abolished fusion. As judged by co-immunoprecipitation experiments, the SNARE motif mutations and the insertions did not alter the association of Vam3p with Vam7p, Vti1p, Nyv1p, and Ykt6p, other vacuolar SNARE proteins implicated in fusion. In contrast, the SNARE motif substitutions interfered with the stable formation of Vam3p complexes with Nyv1p and Vti1p, although Vam3p complexes with Vam7p and Ykt6p were still present. Our data suggest that in contrast to previously characterized syntaxins, Vam3p contains only two domains essential for fusion, the SNARE motif and the TMR, and these domains have to be closely coupled to function in fusion.  相似文献   

4.
AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent alpha-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes.  相似文献   

5.
6.
Yeast strains isolated from the wild may undergo karyotype changes during vegetative growth, a characteristic that compromises their utility in genetic improvement projects for industrial purposes. Karyotype instability is a dominant trait, segregating among meiotic derivatives as if it depended upon only a few genetic elements. We show that disrupting the RAD52 gene in a hypervariable strain partially stabilizes its karyotype. Specifically, RAD52 disruption eliminated recombination at telomeric and subtelomeric sequences, had no influence on ribosomal DNA rearrangement rates, and reduced to 30% the rate of changes in chromosomal size. Thus, there are at least three mechanisms related to karyotype instability in wild yeast strains, two of them not requiring RAD52-mediated homologous recombination. When utilized for a standard sparkling-wine second fermentation, Deltarad52 strains retained the enological properties of the parental strain, specifically its vigorous fermentation capability. These data increase our understanding of the mechanisms of karyotype instability in yeast strains isolated from the wild and illustrate the feasibility and limitations of genetic remediation to increase the suitability of natural strains for industrial processes.  相似文献   

7.
8.
Maturation of 18S rRNA and biogenesis of the 40S ribosomes in yeast requires a large number of trans-acting factors, including the U3 small nucleolar ribonucleoprotein (U3 snoRNP), and the recently characterized cyclase-like protein Rcl1p. U3 snoRNP is a key particle orchestrating early 35S rRNA cleavage events. A unique property of Rcl1p is that it specifically associates with U3 snoRNP, but this association appears to occur only at the level of nascent ribosomes and not with the U3 monoparticle. Here we report the characterization of Bms1p, a protein that associates with Rcl1p in multiple structures, including a specific complex sedimenting at around 10S. Like Rcl1p, Bms1p is an essential, evolutionarily conserved, nucleolar protein, and its depletion interferes with processing of the 35S pre-rRNA at sites A0, A1, and A2, and the formation of 40S subunits. The N-terminal domain of Bms1p has structural features found in regulatory GTPases and we demonstrate that mutations of amino acids implicated in GTP/GDP binding affect Bms1p activity in vivo. The results indicate that Bms1p may act as a molecular switch during maturation of the 40S ribosomal subunit in the nucleolus.  相似文献   

9.
Dot1p modulates silencing in yeast by methylation of the nucleosome core   总被引:25,自引:0,他引:25  
DOT1 was originally identified as a gene affecting telomeric silencing in S. cerevisiae. We now find that Dot1p methylates histone H3 on lysine 79, which maps to the top and bottom of the nucleosome core. Methylation occurs only when histone H3 is assembled in chromatin. In vivo, Dot1p is solely responsible for this methylation and methylates approximately 90% of histone H3. In dot1delta cells, silencing is compromised and silencing proteins become redistributed at the expense of normally silenced loci. We suggest that methylation of histone H3 lysine 79 limits silencing to discrete loci by preventing the binding of Sir proteins elsewhere along the genome. Because Dot1p and histone H3 are conserved, similar mechanisms are likely at work in other eukaryotes.  相似文献   

10.
CATERPILLER (NOD, NBD-LRR) proteins are rapidly emerging as important mediators of innate and adaptive immunity. Among these, Monarch-1 operates as a novel attenuating factor of inflammation by suppressing inflammatory responses in activated monocytes. However, the molecular mechanisms by which Monarch-1 performs this important function are not well understood. In this report, we show that Monarch-1 inhibits CD40-mediated activation of NF-kappaB via the non-canonical pathway in human monocytes. This inhibition stems from the ability of Monarch-1 to associate with and induce proteasome-mediated degradation of NF-kappaB inducing kinase. Congruently, silencing Monarch-1 with shRNA enhances the expression of p52-dependent chemokines.  相似文献   

11.
The antifungal agent, Sinefungin (SF), has been shown to be an inhibitor of transmethylation reactions. We report here the effects of SF on the production and methylation of rRNA in the yeast, Saccharomyces cerevisiae. Under conditions of SF treatment which have been shown to affect the regulation of cell proliferation in this yeast, pulse-chase labeling experiments using [methyl-3H]methionine and [3H]uracil indicated that methyl incorporation into rRNA during a short labeling period was inhibited, and stable 18 S rRNA production was differentially decreased. Other experiments quantitating modified nucleotides in newly produced rRNA showed that stable molecules were methylated. Taken together, these results suggest that SF slows methylation of rRNA, and is associated with differential loss of undermethylated 18 S rRNA species.  相似文献   

12.
The rRNAs of Escherichia coli contain four 2'- O- methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'- O- methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE . The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits or ribosomes. Nucleotide C2498 is situated within a highly conserved and heavily modified rRNA sequence, and YgdE's activity is influenced by other modification enzymes that target this region. Phylogenetically, YgdE is placed in the cluster of orthologous groups COG2933 together with S -adenosylmethionine-dependent, Rossmann-fold methyltransferases such as the archaeal and eukaryotic RNA-guided fibrillarins. The ygdE gene has been redesignated rlmM for r RNA l arge subunit m ethyltransferase M .  相似文献   

13.
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.  相似文献   

14.
p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles in the p53 signaling network. To circumvent this complexity, we studied here the minimal requirements for functionally relevant p53 post-translational modifications by expressing human p53 together with its best characterized modifier Mdm2 in budding yeast. We find that expression of the human p53-Mdm2 module in yeast is sufficient to faithfully recapitulate key aspects of p53 regulation in higher eukaryotes, such as Mdm2-dependent targeting of p53 for degradation, sumoylation at lysine 386 and further regulation of this process by p14(ARF). Interestingly, sumoylation is necessary for the recruitment of p53-Mdm2 complexes to yeast nuclear bodies morphologically akin to human PML bodies. These results suggest a novel role for Mdm2 as well as for p53 sumoylation in the recruitment of p53 to nuclear bodies. The reductionist yeast model that was established and validated in this study will now allow to incrementally study simplified parts of the intricate p53 network, thus helping elucidate the core mechanisms of p53 regulation as well as test novel strategies to counteract p53 malfunctions.  相似文献   

15.
The conserved oligomeric Golgi (COG) complex is an evolutionarily conserved peripheral membrane oligomeric protein complex that is involved in intra-Golgi protein trafficking. The COG complex is composed of eight subunits that are located in two lobes; Lobe A contains COG1-4, and Lobe B is composed of COG5-8. Both in vivo and in vitro protein-protein interaction techniques were applied to characterize interactions between individual COG subunits. In vitro assays revealed binary interactions between Cog2p and Cog3p, Cog2p and Cog4p, and Cog6p and Cog8p and a strong interaction between Cog5p and Cog7p. The two-hybrid assay confirmed these findings and revealed that Cog1p interacted with subunits from both lobes of the complex. Antibodies to COG subunits were utilized to determine the protein levels and membrane association of COG subunits in yeast delta cog1-8 mutants. As a result, we created a model of the protein-protein interactions within the yeast COG complex and proposed that Cog1p is a bridging subunit between the two COG lobes. In support of this hypothesis, we have demonstrated that Cog1p is required for the stable association between two COG subcomplexes.  相似文献   

16.
17.
18.
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a – 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.  相似文献   

19.
D Kressler  M Rojo  P Linder    J Cruz 《Nucleic acids research》1999,27(23):4598-4608
Several mutants ( spb1 - spb7 ) have been previously identified as cold-sensitive extragenic suppressors of loss-of-function mutations in the poly(A)(+)-binding protein 1 of Saccharomyces cerevisiae. Cloning, sequence and disruption analyses revealed that SPB1 (YCL054W) encodes an essential putative S -adenosylmethionine-dependent methyltransferase. Polysome analyses showed an under-accumulation of 60S ribosomal subunits in the spb1-1 mutant and in a strain genetically depleted of Spb1p. Northern and primer extension analyses indicated that this was due to inhibition of processing of the 27SB precursors, which results in depletion of the mature 25S and 5.8S rRNAs. At later time points of Spb1p depletion, the stability of 40S ribosomal subunits is also affected. These results suggest that Spb1p is involved in 60S ribosomal subunit biogenesis and associates early with the pre-ribosomes. Consistent with this, hemagglutinin epitope-tagged Spb1p localizes to the nucleus with nucleolar enrichment. Despite the expected methyltransferase activity of Spb1p, global methylation of pre-rRNA is not affected upon Spb1p depletion. We propose that Spb1p is required for proper assembly of pre-ribosomal particles during the biogenesis of 60S ribosomal subunits.  相似文献   

20.
Inactivation of the budding yeast telomere binding protein Cdc13 results in abnormal telomeres (exposed long G-strands) and activation of the DNA damage checkpoint. In the current study, we show that inactivation of Cdc13p induces apoptotic signals in yeast, as evidenced by caspase activation, increased reactive oxygen species production, and flipping of phosphatidylserine in the cytoplasmic membrane. These apoptotic signals were suppressed in a mitochondrial (rho(o)) mutant. Moreover, mitochondrial proteins (e.g. MTCO3) were identified as multicopy suppressors of cdc13-1, suggesting the involvement of mitochondrial functions in telomere-initiated apoptotic signaling. These telomere-initiated apoptotic signals were also shown to depend on MEC1, but not TEL1, and were antagonized by MRE11. Our results are consistent with a model in which single-stranded G-tails in the cdc13-1 mutant trigger MEC1-dependent apoptotic signaling in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号