首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Microsomes were isolated from white rabbit muscle and separated into several fractions by centrifugation in a discontinuous sucrose density gradient. Four membrane fractions were obtained namely surface membrane, light, intermediate and heavy sarcoplasmic reticulum. The origin of these microsomal vesicles was investigated by studying biochemical markers of sarcoplasmic reticulum and surface and T-tubular membranes. The transverse tubule derived membranes were further purified by using a discontinuous sucrose density gradient after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. All membrane preparations displayed acetylcholinesterase activity (AChE, EC 3.1.1.7), this being relatively more concentrated in T-tubule membranes than in those derived from sarcoplasmic reticulum. The membrane-bound AChE of unfractioned microsomes notably increased its activity by aging, treatment with detergents and low trypsin concentrations indicating that the enzyme is probably attached to the membrane in an occluded form, the unconstrained enzyme displaying higher activity than the vesicular acetylcholinesterase.Sedimentation analysis of Triton-solubilized AChE from different membrane fractions revealed enzymic multiple forms of 13.5S, 9–10S and 4.5–4.8S, the lightest form being the predominant one in all membrane preparations. Therefore, in both sarcoplasmic reticulum and T-tubule membrane the major component of AChE appears to be a membrane-bound component, probably a G1 form.  相似文献   

2.
Abstract: Two acetylcholinesterases (AChEs), AChE1 and AChE2, differing in substrate specificity and in some aspects of inhibitor sensitivity, have been characterized in the mosquito Culex pipiens . The results of ultracentrifugation in sucrose gradients and nondenaturing gel electrophoresis of AChE activity peak fractions show that each AChE is present as two molecular forms: one amphiphilic dimer possessing a glycolipid anchor and one hydrophilic dimer that does not interact with nondenaturing detergents. Treatment by phosphatidylinositol-specific phospholipase C converts each type of amphiphilic dimer into the corresponding hydrophilic dimer. Molecular forms of AChE1 have a lower electrophoretic mobility than those of AChE2. However, amphiphilic dimers and hydrophilic dimers have similar sedimentation coefficients (5.5S and 6.5S, respectively). AChE1 and AChE2 dimers, amphiphilic or hydrophilic, resist dithiothreitol reduction under conditions that allow reduction of Drosophila AChE dimers. In the insecticide-susceptible strain S-LAB, AChE1 is inhibited by 5 × 10−4 M propoxur (a carbamate insecticide), whereas AChE2 is resistant. All animals are killed by this concentration of propoxur, indicating that only AChE1 fulfills the physiological function of neurotransmitter hydrolysis at synapses. In the insecticide-resistant strain, MSE, there is no mortality after exposure to 5 × 10−4 M propoxur: AChE2 sensitivity to propoxur is unchanged, whereas AChE1 is now resistant to 5 × 10−4 M propoxur. The possibility that AChE1 and AChE2 are products of tissue-specific posttranslational modifications of a single gene is discussed, but we suggest, based on recent results obtained at the molecular level in mosquitoes, that they are encoded by two different genes.  相似文献   

3.
Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and >250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AchE possess hydrophobic domain(s) different from the 20 kD peptide already described.Abbreviations used AChE acetylcholinesterase - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMA tetramethylammonium chloride  相似文献   

4.
1. A simple, rapid microassay method is described for measuring acetylcholinesterase (AChE) activity accurately and precisely in small portions of single mosquito homogenates. 2. Up to 30 microassay replicates were possible for individual insects. 3. Microassay data on individual mosquitoes were compared with conventional enzyme assay data acquired using pools of the same homogenates. 4. Under the optimum reaction conditions established, an average Vmax of 7.1 nmol/l/min/mosquito and an average Km of 1.3 x 10(-4) M were observed with acetylthiocholine iodide as substrate. 5. Variability in AChE activity within a sample population of Anopheles albimanus was observed using measurements from individual insects. 6. Such information is fundamental to comparative studies of pesticide physiology (in particular, the resistance phenomenon) in the individual mosquitoes in a population pool; this technique forms the basis for a recently developed resistance microassay.  相似文献   

5.
As chaotropic salts are generally believed to affect water structure in a manner which increases lipophilicity of water, they may seem to be capable of substituting for detergents in the solubilization of particulate enzyme. Although solubilization either by detergents or by chaotropic salts has been demonstrated with several membrane proteins, the effects these agents have on the properties and activity of an enzyme may be quite different. This is illustrated by the effects on mammalian mitochondrial dihydroorotate dehydrogenase. Stability of the solubilized enzymic activity is dependnet on the presence of a detergent and maximum enzymic activity is observed at the critical micelle concentration of the detergent. Addition of low concentrations of various anions of the chaotropic series further enhances activity while higher concentrations of these anions, although increasing solubility of the enzyme, irreversibly inhibit catalysis.  相似文献   

6.
Abstract: Different forms of acetylcholinesterase (AChE), EC 3.1.1.7, were demonstrated in human brain caudate nucleus. One form was solubilized at high ionic strength, the other with Triton X-100. The detergent-extractable form was purified to homogeneity by affinity chromatography. This form of AChE is amphiphile-dependent; i.e., it was active only in the presence of amphiphiles (detergents or lipids). Further, the enzyme was shown to bind detergents and to interact hydrophobically with Phenyl-Sepharose. In the presence of detergents the enzyme is a tetramer (subunit molecular weight, 78,000) which aggregates on the removal of detergents. Human brain AChE showed a reaction of identity with human erythrocyte AChE in crossed-line immunoelectrophoresis. The high-salt-soluble brain enzyme did not cross-react with the erythrocyte enzyme. The two classes of AChE seem not to be related, as they show no common antigenic determinant.  相似文献   

7.
Using phosphatidylinositol-glycan (PtdIns-glycan) anchored acetylcholinesterase from bovine erythrocytes as substrate, we found PtdIns-glycan-anchor-degrading activity in rat liver and serum [corrected]. The hepatic enzyme was only soluble in detergents, whereas the serum enzyme occurs as soluble, slightly amphiphilic protein. Using 3-trifluoromethyl-3-(m- [125I]iodophenyl)diazirine-labelled acetylcholinesterase as substrate, we showed that the hepatic anchor-degrading enzyme had a cleavage specificity of a phospholipase C, whereas the serum enzyme was a phospholipase D. Both enzyme exhibited maximal activity in slightly acidic conditions and at low ionic strength. They had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 0.1 microM and 0.16 microM, respectively). Both hepatic PtdIns-glycan-specific phospholipase C and serum PtdIns-glycan-specific phospholipase D gave a large increase in activity between 0.1-10 microM Ca2+, indicating that PtdIns-glycan-specific phospholipases are only marginally active at physiological intracellular Ca2+ concentrations. The enzymes were inhibited by heavy metal chelating agents such as 1,10-phenanthroline and 2,2'-bipyridyl but not by the corresponding Fe2+ complexes or non-chelating analogues, indicating that they both require a heavy metal ion for the expression of catalytic activity in addition to Ca2+. Another interesting property of PtdIns-glycan-specific phospholipases is their inactivation by bicarbonate and cyanate. The inactivation was time- and pH-dependent and could be reversed by dialysis. These observations are in agreement with a covalent modification of the enzymes by carbamoylation.  相似文献   

8.
The brain of Tenebrio molitor exhibited marked fluctuations in acetylcholinesterase (AChE) activity throughout metamorphosis. This was true AChE activity, since it was inhibited by high substrate concentrations and by 10 μM of the specific AChE inhibitor BW284C51 [(1,5-bis'4-allyldimethylammoniumphenyl)-pentan-3-one dibromide] but not by iso-OMPA (tetraisopropylpyrophosphoramide), a cholinesterase (but not AChE) inhibitor. The histochemical AChE activity was localized in the neuropile and the nuclear envelope of neurons and glial cells. The enzyme extracted from brains with 1% Triton X-100 and 1 M NaCl sedimented as a single peak in a sucrose density gradient, with a sedimentation coefficient of 5.4S. This single AChE sedimentation peak was mainly due to an amphiphilic dimeric form. AChE activity per brain increased in newly ecdysed pupa. AChE activity per milligram of protein exhibited a peak in the mid-pupa which could be correlated to the increase in ecdysteroid titers. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, K m for the substrate (acetylthiocholine), was found to be 0.216 mM and K i for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.  相似文献   

10.
Extraction of human caudate nucleus under high-ionic-strength conditions solubilized 20-30% of total acetylcholinesterase (AChE) activity. Density gradient centrifugation revealed monomeric (5.0 S) and tetrameric (11.0 S) enzyme species. The purified, tetrameric salt-soluble (SS) AChE sedimented at 10.6 S and did not bind detergents. It showed an immunochemical reaction of identity with the detergent-soluble (DS) AChE species from human caudate nucleus and human erythrocytes, but did not cross-react with antibodies raised against human serum cholinesterase. The remaining activity was solubilized under low-ionic-strength conditions in the presence of 1.0% Triton X-100. The purified tetrameric, DS-AChE sedimented at 10.0 S as detergent-protein mixed micelle and on extensive removal of the detergent this enzyme formed defined aggregates by self-micellarization. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed that the salt-soluble and detergent-soluble tetrameric enzyme species both contained a heavy and a light dimer; under reducing conditions mainly one band corresponding to the light subunit was seen. Molecular weights of 300,000 dalton and 280,000 dalton were calculated for SS-AChE and DS-AChE, respectively. Limited digestion of DS-AChE with proteinase K led to isolation of an enzyme that no longer bound detergents and lacked the intersubunit disulfide bridges.  相似文献   

11.
PROPERTIES OF THE EXTERNAL ACETYLCHOLINESTERASE IN GUINEA-PIG IRIS   总被引:1,自引:1,他引:0  
Abstract— The acetylcholinesterase (AChE) of intact iris, the so-called external AChE, differs in several respects from the AChE in an homogenate of iris, called the total AChE. Maximum enzyme activities of the external and total AChE were obtained with an ACh concentration of 10 and 1.3 m m , respectively. The total AChE exhibited substrate inhibition at high substrate concentrations, whereas the external enzyme did not exhibit substrate inhibition in the range studied. The external AChE activity, when measured at 1.3 m m -ACh. accounted only for 12% of the total enzyme activity. After irreversible inhibition of AChE with diisopropylfluorophosphate (DFP) or methylisocyclopentylfluorophosphate (soman) the external AChE recovered to almost normal values after 48 h, whereas only 30% of the total AChE recovered during this period. Pupillographic studies after inhibition with DFP demonstrated that pupillary diameter had reached normal size after 24 h.
Destruction of the cholinergic input to iris reduced the total AChE activity by 40%, but did not alter the external AChE activity nor its rate of recovery after DFP inhibition. The specific activities of total AChE and total choline acetyltransferase were significantly higher in the sphincter than in the dilator muscle. After such denervation of iris the greatest reduction in total AChE and choline acetyltransferase were found in the sphincter region. After treatment with DFP the total AChE was inhibited to the same extent and recovered at the same rate in both regions.
After extraction of AChE from iris with various salt solutions and detergents, the particulate enzyme recovered faster than the soluble enzyme from DFP inhibition.  相似文献   

12.
K 562 cell acetylcholinesterase (AChE), identifiable by active site labeling with radioactive diisopropylfluorophosphate (DFP), showed a Mr around 55,000 in both a crude lysate and a purified sample. The K 562 AChE was reactive with one polyclonal and two monoclonal antibodies produced against human erythrocyte AChE. Subcellular localization, investigated by assay on cell fractions, showed that AChE is membrane bound and that it is located on the cell surface as well as on microsomal and Golgi membranes. Biosynthesis of new enzyme molecules, after inactivation of the constitutive AChE with the irreversible inhibitor DFP, allowed us to follow the kinetics of reappearance in the intracellular compartment and at the cell surface (4 and 8 h, respectively).  相似文献   

13.
The mouse neuroblastoma cell line NB2A produces cellular and secreted acetylcholinesterase (AChE). After incubation of the cells for 4 days the ratio between AChE secreted into the medium and AChE in the cells was 1:1. The cell-associated enzyme could be subdivided into soluble AChE (25%) and detergent-soluble AChE (75%). Both extracts contained predominantly monomeric AChE (4.6S) and minor amounts of tetrameric AChE (10.6S), whereas the secreted AChE in the culture supernatant contained only the tetrameric form. All forms were partially purified by affinity chromatography. It could be demonstrated that the secretory and the intracellular soluble tetramers were hydrophilic, whereas the detergent-soluble tetramer was an amphiphilic protein. On the other hand the soluble and the detergent-soluble monomeric forms were amphiphilic and their activity depended on the presence of detergent. By digestion with proteinase K amphiphilic monomeric and tetrameric AChE could be converted to a hydrophilic form that no longer required detergent for catalytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [3H]diisopropylfluorophosphate-labelled AChE gave one band at 64 kilodaltons (kD) under reducing conditions and two additional bands at 120 kD and 140 kD under nonreducing conditions.  相似文献   

14.
Recently there has been evidence that contaminants other than organophosphate and carbamate pesticides may inhibit the activity of the enzyme acetylcholinesterase (AChE) both under in vitro and in vivo conditions. In this study we investigated the in vitro effect of three detergents \[dodecyl benzyl sulphonate (DBS), sodium dodecyl sulphate (SDS) and a mixture commonly used as domestic detergent (X)] and three metals \[molybdenum, barium and chromium (VI)] on AChE activity of Mytilus galloprovincialis haemolymph. All the detergents tested significantly inhibited the activity of the enzyme. The lowest observed effect concentrations were equal to 12 5 for DBS and 50 mg l-1 for SDS and X. Among the metals, molybdenum and barium had no effect on AChE activity, whereas chromium (VI) significantly depressed the activity of the enzyme at concentrations equal to or higher than 25 mg l-1. These results suggest that the use of AChE as a specific biomarker for organophosphate and carbamate pesticides should be questioned and that the use of this enzyme as a biomarker could be extended.  相似文献   

15.
Recently there has been evidence that contaminants other than organophosphate and carbamate pesticides may inhibit the activity of the enzyme acetylcholinesterase (AChE) both under in vitro and in vivo conditions. In this study we investigated the in vitro effect of three detergents \[dodecyl benzyl sulphonate (DBS), sodium dodecyl sulphate (SDS) and a mixture commonly used as domestic detergent (X)] and three metals \[molybdenum, barium and chromium (VI)] on AChE activity of Mytilus galloprovincialis haemolymph. All the detergents tested significantly inhibited the activity of the enzyme. The lowest observed effect concentrations were equal to 12 5 for DBS and 50 mg l-1 for SDS and X. Among the metals, molybdenum and barium had no effect on AChE activity, whereas chromium (VI) significantly depressed the activity of the enzyme at concentrations equal to or higher than 25 mg l-1. These results suggest that the use of AChE as a specific biomarker for organophosphate and carbamate pesticides should be questioned and that the use of this enzyme as a biomarker could be extended.  相似文献   

16.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

17.
Abstract— Angiotensin converting enzyme (peptidyl dipeptide hydrolase EC 3.4.15.1) was extracted from particulates of rat brain using the nonionic detergent Triton X-100. Enzyme activity in subcellular fractions was associated with purified synaptosomes and present in the microsomal fraction, but absent in purified mitochondria and water-shocked myelin. Partial purification was achieved by chromatography on DEAE-cellulose and hydroxylapatite columns. The enzyme had a pH optimum of pH 7–8 and an apparent Km of 2.2 m m using hippuryl-histidyl-leucine as substrate; it was chloride dependent, inhibited by (Sar1-Ala8)-angiotensin-II (saralasin), and, at lower concentrations, by the specific nonapeptide inhibitor SQ 20881. Associated with the purified enzyme was an aminopeptidase, cleaving N-terminal Asp from the native substrate, which could be involved in the production of the active heptapeptide, angiotensin III (des-Asp-angiotensin-II). Also present was a carboxypeptidase-like enzyme removing C-terminal Phe following the liberation of His-Leu by converting enzyme, which may be involved in the inactivation of angiotensin II or III.  相似文献   

18.
Lysosomal membrane fractions were prepared from lysosomes of mouse liver by freeze-thawing in a hypotonic buffer: 54% of beta-glucosidase [EC 3.2.1.45] in lysosomes was associated with the membrane fractions, whereas 96% of beta-glucuronidase [EC 3.2.1.31] was recovered in the soluble fractions of lysosomes. beta-glucosidase was solubilized by pH 9.5 treatment or by Triton treatment of membranes. The enzyme solubilized with alkali and concentrated with (NH4)2SO4 was rapidly inactivated in a solution of pH 9.5, but could be protected against inactivation by acidic detergent. Gel filtration analysis indicated that beta-glucosidase was in an aggregated form at neutral pH and could be disaggregated by alkali and detergents. The enzyme dissociated with detergents also showed a higher activity than the alkali-treated enzyme. These results suggested that beta-glucosidase is a peripheral enzyme bound to acidic lipids in membranes. beta-Glucosidase was purified to apparent homogeneity by (NH4)2SO4 fractionation and chromatographies with Sephacryl S-300, hydroxylapatite and cation exchangers in the presence of detergents. The catalytic activity of the purified enzyme was maximally stimulated by phosphatidylserine and heat-stable protein in the presence of a low concentration of Triton X-100. The stimulation was mainly due to an increase in Vmax.  相似文献   

19.
Differences in the glycosylation of acetylcholinesterase (AChE) subunits which form the dimers of mouse erythrocyte and a suitable procedure to purify the enzyme by affinity chromatography in edrophonium-Sepharose are described. AChE was extracted ( approximately 80%) from erythrocytes with Triton X-100 and sedimentation analyses showed the existence of amphiphilic AChE dimers in the extract. The AChE dimers were converted into monomers by reducing the disulfide bond which links the enzyme subunits. Lectin interaction studies revealed that most of the dimers were bound by concanavalin A (Con A) (90-95%), Lens culinaris agglutinin (LCA) (90-95%), and wheat germ (Triticum vulgaris) agglutinin (WGA) (70-75%), and a small fraction by Ricinus communis agglutinin (RCA(120)) (25-30%). The lower level of binding of the AChE monomers with WGA (55-60%), and especially with RCA (10-15%), with respect to the dimers, reflected heterogeneity in the sugar composition of the glycans linked to each AChE subunit in dimers. Forty per cent of the amphiphilic AChE dimers lost the glycosylphosphatidylinositol (GPI) and, therefore, were converted into hydrophilic forms, by incubation with phosphatidylinositol-specific phospholipase C (PIPLC), which permitted their separation from the amphiphilic variants in octyl-Sepharose. Only the hydrophilic dimers, either isolated or mixed with the amphiphilic forms, were bound by edrophonium-Sepharose, which allowed their purification (4800-fold) with a specific activity of 7700 U/mg protein. The identification of a single protein band of 66 kDa in gel electrophoresis demonstrates that the procedure can be used for the purification of GPI-anchored AChE, providing that the attached glycolipid domain is susceptible to PIPLC.  相似文献   

20.
The effect of the neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+) on acetylcholinesterase (AchE) activity was investigated. The MPP+ was found to inactivate the enzyme in a dose dependent manner. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPP+ for the inactivation of AChE was found to be 0.197 mM. It was found that MPP+ is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate inactivation of AChE to be a linear mixed-type inhibition. The inactivation of AChE by MPP+ was partially recovered by either dilution or gel exclusion chromatography. These data suggest that once MPP+ enters the basal ganglia of the brain, it can inactivate the AChE and thereby increase the acetylcholine level in the basal ganglia, leading to potential cell dysfunction. It appears likely that the nigrostriatal toxicity by MPP+ leading to Parkinson's disease-like syndrome may, in part, be mediated via the AChE inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号