首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jain T  Jayaram B 《FEBS letters》2005,579(29):6659-6666
We report here a computationally fast protocol for predicting binding affinities of non-metallo protein-ligand complexes. The protocol builds in an all atom energy based empirical scoring function comprising electrostatics, van der Waals, hydrophobicity and loss of conformational entropy of protein side chains upon ligand binding. The method is designed to ensure transferability across diverse systems and has been validated on a heterogenous dataset of 161 complexes consisting of 55 unique protein targets. The scoring function trained on a dataset of 61 complexes yielded a correlation of r=0.92 for the predicted binding free energies against the experimental binding affinities. Model validation and parameter analysis studies ensure the predictive ability of the scoring function. When tested on the remaining 100 protein-ligand complexes a correlation of r=0.92 was recovered. The high correlation obtained underscores the potential applicability of the methodology in drug design endeavors. The scoring function has been web enabled at as binding affinity prediction of protein-ligand (BAPPL) server.  相似文献   

2.
Zinc(II)cyclen-peptide hybrid compounds and bis-zinc(II)cyclen complexes are prepared as potential binders of the guanine nucleotide binding protein Ras, an important molecular switch in cellular signal transduction. The design of the compounds is based on the previous observation that zinc(II)cyclen complexes could serve as lead compounds for inhibitors of Ras-effector interaction and thus be able to interrupt Ras induced signal transduction. Zinc(II)cyclen selectively stabilizes conformational state 1 of active Ras, a conformational state with drastically decreased affinity to effector proteins like Raf-kinase. To achieve higher binding affinities of such Ras-Raf interaction inhibitors, zinc(II)cyclen conjugates with short peptides, derived from the sequence of the Ras-activator SOS, were prepared by solid phase synthesis protocols. Dinuclear bis-zinc(II)cyclen complexes were obtained from alkyne-azide cycloaddition reactions. NMR investigations of the prepared compounds revealed that the peptide conjugates do not lead to an increase in Ras binding affinity of the metal complex-peptide conjugates. The dinuclear zinc complexes lead to an immediate precipitation of the protein prohibiting spectroscopic investigations of their binding.  相似文献   

3.
Ataie NJ  Hoang QQ  Zahniser MP  Tu Y  Milne A  Petsko GA  Ringe D 《Biochemistry》2008,47(29):7673-7683
The chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization. To test the correlation between charge/dipole polarity and ligand binding affinity, structure-function studies were carried out on the dizinc aminopeptidase from Vibrio proteolyticus. Alanine substitutions of S228 and M180 resulted in catalytically diminished enzymes whose crystal structures show very little change in the positions of the metal ions and the protein residues. However, more detailed inspections of the crystal structures show small positional changes that account for differences in the zinc ion coordination geometry. Measurements of the binding affinity of leucine phosphonic acid, a transition state analogue, and leucine, a product, show a correlation between coordination geometry and ligand binding affinity. These results suggest that the coordination number and polarity may tune the electrophilicity of zinc. This may have provided the evolving enzyme with the ability to discriminate between reaction coordinate species.  相似文献   

4.
Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein–protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.  相似文献   

5.
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.  相似文献   

6.
The ability to construct molecular motifs with predictable properties in aqueous solution requires an extensive knowledge of the relationships between structure and energetics. The design of metal binding motifs is currently an area of intense interest in the bioorganic community. To date synthetic motifs designed to bind metal ions lack the remarkable affinities observed in biological systems. To better understand the structural basis of metal ion affinity, we report here the thermodynamics of binding of divalent zinc ions to wild-type and mutant carbonic anhydrases and the interpretation of these parameters in terms of structure. Mutations were made both to the direct His ligand at position 94 and to indirect, or second-shell, ligands Gln-92, Glu-117, and Thr-199. The thermodynamics of ligand binding by several mutant proteins is complicated by the development of a second zinc binding site on mutation; such effects must be considered carefully in the interpretation of thermodynamic data. In all instances modification of the protein produces a complex series of changes in both the enthalpy and entropy of ligand binding. In most cases these effects are most readily rationalized in terms of ligand and protein desolvation, rather than in terms of changes in the direct interactions of ligand and protein. Alteration of second-shell ligands, thought to function primarily by orienting the direct ligands, produces profoundly different effects on the enthalpy of binding, depending on the nature of the residue. These results suggest a range of activities for these ligands, contributing both enthalpic and entropic effects to the overall thermodynamics of binding. Together, our results demonstrate the importance of understanding relationships between structure and hydration in the construction of novel ligands and biological polymers.  相似文献   

7.
Protein-ligand docking is a computational method to identify the binding mode of a ligand and a target protein, and predict the corresponding binding affinity using a scoring function. This method has great value in drug design. After decades of development, scoring functions nowadays typically can identify the true binding mode, but the prediction of binding affinity still remains a major problem. Here we present CScore, a data-driven scoring function using a modified Cerebellar Model Articulation Controller (CMAC) learning architecture, for accurate binding affinity prediction. The performance of CScore in terms of correlation between predicted and experimental binding affinities is benchmarked under different validation approaches. CScore achieves a prediction with R = 0.7668 and RMSE = 1.4540 when tested on an independent dataset. To the best of our knowledge, this result outperforms other scoring functions tested on the same dataset. The performance of CScore varies on different clusters under the leave-cluster-out validation approach, but still achieves competitive result. Lastly, the target-specified CScore achieves an even better result with R = 0.8237 and RMSE = 1.0872, trained on a much smaller but more relevant dataset for each target. The large dataset of protein-ligand complexes structural information and advances of machine learning techniques enable the data-driven approach in binding affinity prediction. CScore is capable of accurate binding affinity prediction. It is also shown that CScore will perform better if sufficient and relevant data is presented. As there is growth of publicly available structural data, further improvement of this scoring scheme can be expected.  相似文献   

8.
9.
Huang SY  Zou X 《Proteins》2008,72(2):557-579
Using an efficient iterative method, we have developed a distance-dependent knowledge-based scoring function to predict protein-protein interactions. The function, referred to as ITScore-PP, was derived using the crystal structures of a training set of 851 protein-protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore-PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein-protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge-based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein-protein complexes. For the bound test cases, ITScore-PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue-level knowledge-based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side-chain center of mass (SCM) to represent a residue, referred to as ITScore-PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore-PP was further tested using two other published protein-protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore-PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein-protein complexes with known affinities. ITScore-PP is computationally efficient. The average run time for ITScore-PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore-PP(SCM) is about an order of magnitude faster than that of ITScore-PP. ITScore-PP and/or ITScore-PP(SCM) can be combined with efficient protein docking software to study protein-protein recognition.  相似文献   

10.
A free energy function can be defined as a mathematical expression that relates macroscopic free energy changes to microscopic or molecular properties. Free energy functions can be used to explain and predict the affinity of a ligand for a protein and to score and discriminate between native and non-native binding modes. However, there is a natural tension between developing a function fast enough to solve the scoring problem but rigorous enough to explain and predict binding affinities. Here, we present a novel, physics-based free energy function that is computationally inexpensive, yet explanatory and predictive. The function results from a derivation that assumes the cost of polar desolvation can be ignored and that includes a unique and implicit treatment of interfacial water-bridged interactions. The function was parameterized on an internally consistent, high quality training set giving R2=0.97 and Q2=0.91. We used the function to blindly and successfully predict binding affinities for a diverse test set of 31 wild-type protein-protein and protein-peptide complexes (R2=0.79, rmsd=1.2 kcal mol(-1)). The function performed very well in direct comparison with a recently described knowledge-based potential and the function appears to be transferable. Our results indicate that our function is well suited for solving a wide range of protein/peptide design and discovery problems.  相似文献   

11.
《Inorganica chimica acta》2006,359(4):1159-1168
Reversible coordination of amino acid side chains to metal complexes is widely used in protein purification (IMAC technique), but available data on affinity and selectivity of such binding processes are limited. We use potentiometric titration of a series of metal complexes with vacant coordination sites in the presence of molecules resembling amino acid side chain functionalities to screen for new affinities. The investigation confirms documented affinities of imidazole to nickel(II) and copper(II) IDA and NTA complexes, and discovers a hitherto unknown binding of zinc(II)- and cadmium(II) cyclen complexes to imidazole.  相似文献   

12.
Sun L  Harris ME 《RNA (New York, N.Y.)》2007,13(9):1505-1515
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.  相似文献   

13.
The stability constants for the calcium and magnesium complexes of rhodanese are >105m?1 at both high and low substrate concentrations. The stoichiometry of alkaline earth metal ion binding totals close to 1 per 18,500 molecular weight. The usual assay reagents contain sufficient amounts of these metal ions to maintain added enzyme in its metal-complexed form. When reaction mixtures are treated with oxalate to remove calcium ions, inhibition of rhodanese activity is virtually complete under circumstances such that the contribution of magnesium ion is low.Zinc and a number of transition metal ions are inhibitors of rhodanese activity. Studies of the concentration dependence of these effects with zinc, copper, and nickel showed that: 1) Some cyanide complexes of these metals are competitive with the donor substrate, thiosulfate ion. The binding of the copper and zinc complexes is mutually competitive. 2) Another cyanide species of copper appears to combine with the free enzyme to form a functionally active complex. 3) The zinc cyanide species with a net positive charge is an inhibitor competitive with the acceptor substrate, cyanide ion.All of these observations are consistent with a model in which metal ions serve as the electrophilic site of rhodanese.  相似文献   

14.
J A Hunt  M Ahmed  C A Fierke 《Biochemistry》1999,38(28):9054-9062
The role of highly conserved aromatic residues surrounding the zinc binding site of human carbonic anhydrase II (CAII) in determining the metal ion binding specificity of this enzyme has been examined by mutagenesis. Residues F93, F95, and W97 are located along a beta-strand containing two residues that coordinate zinc, H94 and H96, and these aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitutions of these aromatic amino acids with smaller side chains enhance the copper affinity (up to 100-fold) while decreasing the affinity of both cobalt and zinc, thereby altering the metal binding specificity up to 10(4)-fold. Furthermore, the free energy of the stability of native CAII, determined by solvent-induced denaturation, correlates positively with increased hydrophobicity of the amino acids at positions 93, 95, and 97 as well as with cobalt and zinc affinity. Conversely, increased copper affinity correlates with decreased protein stability. Zinc specificity is therefore enhanced by formation of the native enzyme structure. These data suggest that the hydrophobic cluster in CAII is important for orienting the histidine residues to stabilize metals bound with a distorted tetrahedral geometry and to destabilize the trigonal bipyramidal geometry of bound copper. Knowledge of the structural factors that lead to high metal ion specificity will aid in the design of metal ion biosensors and de novo catalytic sites.  相似文献   

15.
The separation of proteins on stationary phases consisting of a bound organic chelator and a chelated divalent transition metal has been studied as a function of (A) metal ion species; (B) mobile phase composition and pH; and (C) anion and cation concentration. Optimum separation was observed at alkaline pH on chelated nickel stationary phases. Ammonium and Tris salts reduced the affinity of the metal chelate packing for serum proteins. Halide ions caused the proteins to be more strongly bound to the stationary phase. High salt concentrations had only a small effect on the binding of serum proteins in the absence of amine containing buffers or salts. It was also observed that the ease of elution and the recovery of protein were dependent on pH and upon the presence of halides. The general order of elution of serum proteins, based on isoelectric focusing, was independent of metal ion species and elution conditions, suggesting that a single mechanism or a unique sequence of mechanisms was operative. The results suggest that ligand exchange is the major mechanism of separation under basic conditions and that hydrophobic effects are the result of the competition of nonnitrogen ions with ammonium ions or amines for ligand binding sites modifying or participating in protein binding. Protein binding studies under weak acidic conditions are also presented although the mechanism responsible for protein binding is unclear.  相似文献   

16.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

17.
Wolfgang Maret 《Biometals》2013,26(2):197-204
Several pathways increase the concentrations of cellular free zinc(II) ions. Such fluctuations suggest that zinc(II) ions are signalling ions used for the regulation of proteins. One function is the inhibition of enzymes. It is quite common that enzymes bind zinc(II) ions with micro- or nanomolar affinities in their active sites that contain catalytic dyads or triads with a combination of glutamate (aspartate), histidine and cysteine residues, which are all typical zinc-binding ligands. However, for such binding to be physiologically significant, the binding constants must be compatible with the cellular availability of zinc(II) ions. The affinity of inhibitory zinc(II) ions for receptor protein tyrosine phosphatase β is particularly high (K i = 21 pM, pH 7.4), indicating that some enzymes bind zinc almost as strongly as zinc metalloenzymes. The competitive pattern of zinc inhibition for this phosphatase implicates its active site cysteine and nearby residues in the coordination of zinc. Quantitative biophysical data on both affinities of proteins for zinc and cellular zinc(II) ion concentrations provide the basis for examining the physiological significance of inhibitory zinc-binding sites in proteins and the role of zinc(II) ions in cellular signalling. Regulatory functions of zinc(II) ions add a significant level of complexity to biological control of metabolism and signal transduction and embody a new paradigm for the role of transition metal ions in cell biology.  相似文献   

18.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   

19.
With the exception of calcium very little is known about metal binding characteristics of either human salivary or porcine pancreatic amylase. In order to learn more about these protein-metal binding interactions, calcium-free human salivary and porcine pancreatic amylase [P(protein)] were obtained by carboxymethylcellulose chromatography of the partially purified proteins. Because these proteins acquired small amounts of calcium after further preparatory studies, they were dialyzed against 1 mM EDTA, pH 7.4, at 22 degrees C, which removed essentially all acquired calcium. The calcium-free amylases were then subjected to equilibrium dialysis against copper or zinc solutions with or without added glycine. The experimental data were fitted to appropriate mathematical equations, and binding constants of the metal complexes were calculated. Both human salivary and porcine pancreatic amylase were found to have two metal ion binding sites, only one of which was selective for calcium. Copper or zinc appeared to bind to the second site forming the species CuCaLP (or ZnCaP), where L, a ligand, is the glycine anion. Neither copper nor zinc displaced calcium from human salivary amylase, although copper bound to both binding sites in human salivary apoamylase to form the species Cu2L2P in which the amylase molecule appeared to form a bridge between the two copper atoms. In the case of the zinc-human salivary apoamylase system, the experimental data could not be analyzed quantitatively since the protein formed an insoluble complex species. Copper displaced calcium from porcine pancreatic amylase and formed a mixed ligand species similar to that formed with human salivary apoamylase. Zinc bound to both metal binding sites of porcine pancreatic apoamylase, forming species ZnP and Zn2P, although it did not displace calcium from the protein. While calcium in amylase is known to be critical for its amylolytic activity, little is known about the function of either zinc or copper in amylase albeit both of these metals are important in biological systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号