首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In 1998 a severe disease was observed on rose cvs. 'Patina', 'Papillon' and 'Mercedes' cultivated in a commercial greenhouse in Poland. The symptoms included stunted growth, bud proliferation, leaf malformation and deficiency of flower buds. Sporadically some plants yielded flower buds transformed into big-bud structures and degenerated flowers. The presence of phytoplasma in roses with severe symptoms as well as in recovered plants and Catharanthus roseus experimentally infected by grafting and via dodder was demonstrated by nested polymerase chain reaction assay with primers pair R16F2/R2 or R16F1/R0 and R16(I)F1/R1 amplifying phytoplasma 16S rDNA fragment. The polymerase chain reaction products (1.1 kb) used for restriction fragment length polymorphism analysis after digestion with endonuclease enzymes Alu I and Mse I produced the same restriction profiles for all samples. The restriction profiles of phytoplasma DNA from these plants corresponded to those of an aster yellows phytoplasma reference strain. Electron microscope examination of the ultra-thin sections of the stem showed wall thickenings of many sieve tubes of the diseased roses and single phytoplasma cells within a sieve element of the phloem of experimentally infected periwinkles. This paper is the first report on aster yellows phytoplasma in rose identified at a molecular level.  相似文献   

2.
3.
Treatment of diseased magnolia plants with Oxytetracycline, Baytril or Tylan did not reduce the number of symptomatic plants, but promoted shoot growth, development of symptomless leaves and flower buds. The most efficient were 500 ppm Baytril, 200 ppm Tylan and 500 or 1000 ppm Oxytetracycline. Lower concentrations of Baytril and Oxytetracycline were less effective and higher concentrations of Tylan decreased the growth of magnolia shoots. All the tested antibiotic treated and untreated magnolias were shown by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) to contain the AY (16SrI) phytoplasma and two also to contain a phytoplasma related to apple proliferation phytoplasma group (16SrX). The results indicate that Magnolia is a natural host of phytoplasmas belonging to the aster yellows and apple proliferation phytoplasma groups, and support the suggestion that phytoplasmas are the cause of magnolia stunting disease.  相似文献   

4.
In 2002, garden beet witches’ broom (GBWB) phytoplasma was detected for the first time in garden beet plants (Beta vulgaris L. ssp. esculenta) in Yazd, Iran. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphic (RFLP) analysis of PCR‐amplified phytoplasma 16S rDNA were employed for the detection and identification of the phytoplasma associated with garden beet. A phytoplasma belonging to subgroup 16SrII‐E, in the peanut witches’ broom group (16SrII), was detected in infected plants. Asymptomatic plant samples and the negative control yielded no amplification. The result of analysis of the nucleotide sequence of a 1428 bp fragment of 16S rDNA gene from GBWB phytoplasma (GenBank accession number DQ302722 ) was basically consistent with the classification based on RFLP analysis, in which GBWB phytoplasma clustered with phytoplasmas of the 16SrII‐E subgroup. A search for a natural phytoplasma vector was conducted in Yazd in 2004, in an area where garden beet crops had been affected since 2002. The associated phytoplasma was detected in one leafhopper species, Orosius albicinctus, commonly present in this region. The leafhopper O. albicinctus was used in transmission tests to determine its vector status for the phytoplasma associated with GBWB. Two of eight plants that had been fed on by O. albicinctus, showed mild symptoms of GBWB including stunting and reddening of midveins. A phytoplasma was detected in the two symptomatic test plants by PCR using universal primers and it was identified by RFLP as the GBWB phytoplasma. This finding suggests O. albicinctus is a vector of the GBWB phytoplasma.  相似文献   

5.
Severe leaf scorch symptoms occurred on oriental lily hybrids cv. Woodriff's Memory cultivated in two commercial greenhouses in Poland. Symptoms included leaf necrosis and malformation, flower bud abscission and flower virescence, distortion and abortion. Naturally infected lily plants with severe symptoms in 1999 had retarded growth and leaf chlorosis and they failed to flower the following year. The presence of phytoplasmas in diseased lilies was demonstrated using nested polymerase chain reaction (PCR) assays with universal and 16SrI group specific primer pairs that amplified the phytoplasma 16S rDNA fragment. The PCR products (1.1 kb) of all samples used for restriction fragment length polymorphism analysis had the same restriction profiles after digestion with endonucleases Alu I and Mse I. The restriction profiles of phytoplasma DNA from these plants corresponded to those of an aster yellows phytoplasma reference strain.  相似文献   

6.
In Alberta, Canada, valerian grown for medicinal purposes and sowthistle, a common weed, showed typical aster yellows symptoms. Molecular diagnosis was made using a universal primer pair (P1 / P7) designed to amplify the entire 16S rRNA gene and the 16 / 23S intergenic spacer region in a direct polymerase chain reaction (PCR) assay. This primer pair amplified the DNA samples from valerian and sowthistle and reference controls (AY‐27, CP, PWB, AY of canola, LWB). They produced the expected PCR products of 1.8 kb, which were diluted and used as templates in a nested PCR. Two primer pairs R16F2n / R2 and P3 / P7 amplified the DNA templates giving PCR products of 1.2 and 0.32 kb, respectively. No PCR product was obtained with either set of primers and DNA isolated from healthy plants. Restriction fragment length polymorphism (RFLP) was used to analyse the partial 16S rDNA sequences (1.2 kb) of all phytoplasma DNA samples after restriction with four endonucleases (AluI, HhaI, MseI and RsaI). The restriction patterns of these strains were found to be identical with the RFLP pattern of the AY phytoplasma reference control (AY‐27 strain). Based on the RFLP data, the two strains are members of subgroup A of the AY 16Sr1 group. We report here the first molecular study on the association of AY phytoplasmas with valerian and sowthistle plants.  相似文献   

7.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

8.
The presence of phytoplasmas in declining trees of European hackberry was demonstrated for the first time using polymerase chain reaction assays with primers amplifying phytoplasma 16S rDNA regions. Restriction fragment length polymorphism analysis of these DNA fragments together with PCR, employing primers specific for particular phylogenetic groups of phytoplasmas, made it possible to detect the presence of aster yellows group (16SrI) related phytoplasmas. These were classified into two different subgroups (I-B and I-C) and were present in both symptomatic and asymptomatic hackberry plants. Aster yellows-related phytoplasmas were found in all the root samples collected during the winter. In addition, phytoplasmas from the peach X disease group (16SrIH) were found in four out of 10 root samples; in five root samples phytoplasmas of the elm yellows group (16SrV) were also present.  相似文献   

9.
Yaima  Arocha  Teme  Zerfy  Germa  Abebe  Janice  Proud  Jean  Hanson  Michael  Wilson  Phil  Jones  John  Lucas 《Journal of Phytopathology》2009,157(2):126-132
Napier grass ( Pennisetum purpureum ), the most important forage crop in East Africa, has recently been affected by a devastating disease named Napier Grass Stunt (NGS). A phytoplasma of group 16SrI has been associated with NGS in Kenya and Uganda, whereas in Ethiopia, group 16SrIII was previously identified in NGS affected fields. However, no insect vectors or alternative hosts have been recorded for NGS in East Africa. During 2005, surveys were conducted at NGS-affected plantations of Debre-Zeit and Zwai field stations in Addis Ababa. Leaf samples were collected from weeds located in and surrounding the NGS-affected areas. Leafhopper species were also surveyed by vacuum sampling in a search for natural phytoplasma vectors. Total DNA was extracted from plants and insects, and used as a template in nested polymerase chain reaction (nPCR) with universal 16S rRNA phytoplasma primers. Restriction fragment length polymorphism (RFLP), sequencing of PCR products and phylogenetic analysis were conducted for a finer identification and characterization of the phytoplasma associated with NGS. A 16SrIII-A phytoplasma with 100% of identity in the 16S rRNA sequence with that of the previously identified one in Napier Grass (accession no. DQ305977 ) was identified from alfalfa, Medicago sativa (accession no. DQ305982 ), Cynodon dactylon (accession no. DQ3058983 ), Exitianus sp. ( DQ305980 ) and Leptodelphax dymas collected in Debre Zeit (accession no. DQ305979 ) and Zwai (accession no. DQ305978 ). These findings suggest that M. sativa and Cy. dactylon are alternative reservoirs, and Exitianus sp. and L. dymas , potential vectors of the 16SrIII-A phytoplasma, which may have epidemiological implications in spreading NGS in Ethiopia.  相似文献   

10.
Aster yellows phytoplasma were detected, for the first time, in peach trees in Al‐Jubiha and Homret Al‐Sahen area. Leaves of infected trees showed yellow or reddish, irregular water‐soaked blotches. Discoloured areas become dry and brittle and the dead tissues dropped out. Under severe infections, leaves fall down and fruits dropped prematurely. Phytoplasmas were detected from all symptomatic peach trees by polymerase chain reaction (PCR) using universal phytoplasmas primers P1/P7 followed by R16F2/R2. No amplification products were obtained from templates of asymptomatic peaches. PCR products (1.2 kb) used for restriction fragment length polymorphism analysis (RFLP) after digestion with endonuclease AluI, HpaII, KpnI and RsaI produced the same restriction profiles for all samples, and they were identical with those of American aster yellows (16SrI) phytoplasma strain. This paper is the first report on aster yellows phytoplasma affecting peach trees in Jordan.  相似文献   

11.
A new severe little leaf disease was observed on P. grandiflora, popular as Moss-rose Purslane, widely grown in temperate zones. Characteristic symptoms, ultrastructural studies, antibiotic response and amplification of 16S ribosomal DNA fragments (about 1.5 kb) by polymerase chain reaction (PCR) from infected samples, suspect the involvement of phytoplasma as a pathogen. Nested PCR product, 1.2 kb, with primer pairs R16F2n/R16R2 used for cloning and sequencing. Comparision of the 16S rRNA gene sequences showed that the causal, PLL phytoplasma, is very close (98%) to Indian brinjal little leaf (EF186820) and “Candidatus Phytoplasma trifolii” (AY390261), 16SrVI group phytoplasmas, previously reported from India and Canada respectively. Here, the status of PLL (EF651786) is verified by computer-simulated restriction fragment length polymorphism analysis of 16S rRNA genes of the F2n/R2 sequences of closely related strains of the 16SrVI group using 17 restriction enzymes.  相似文献   

12.
13.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

14.
Sequence analysis and riboprinting of the small subunit ribosomal RNA genes were used to characterize two morphologically different Perkinsus species isolates from the gill (G117) and the hemolymph (H49) of the softshell clam, Mya arenaria. Sequence data of the polymerase chain reaction amplified ribosomal RNA loci of G117 and H49 indicated that these genes are 1803 and 1806 base-pair long, respectively. A sequence similarity of > 98.9% was calculated among ribosomal RNA sequences of the two isolates of this study and the published sequences of Perkinsus marinus from the American eastern oyster, Crassostrea virginica, and Perkinsus sp. from the blood cockle of the Australian mollusc, Anadara trapezia. From a phylogenetic tree obtained from Jukes-Cantor distances of the aligned ribosomal RNA gene sequences of 13 eukaryotic taxa using the Neighbor-Joining method, we showed that G117 and H49 clustered within the genus Perkinsus. Guided by the sequence data of Perkinsus marinus (accession # X75762) and Perkinsus sp. (accession # L07375), restriction endonucleases were selected for restriction fragment analysis of polymerase chain reaction products of the small subunit ribosomal RNA genes (riboprinting). Riboprinting was used to distinguish the four members of the genus Perkinsus from each other.  相似文献   

15.
目的建立一种准确、可靠的鉴定都柏林念珠菌基因型的方法。方法临床念珠菌分离自临床生殖器念珠菌病患者,45℃温度试验时几乎不生长,且其他表型实验结果也符合都柏林念珠菌特征。对41例临床念珠菌和1例白念珠菌标准株、1例都柏林念珠菌标准株rDNA内部转录间隔区的基因进行聚合酶链反应(PCR)扩增,HpyF10Ⅵ酶切后观察PAGE图谱。结果聚合酶链反应-限制性片段长度多态性(PCR-RFLP)后,39例临床株鉴定为白念珠菌。2例临床菌株带型特殊,测序后行BLAST比对分析,1例鉴定为白念珠菌,另1例尚不能肯定为都柏林念珠菌,还需要进一步以其他分子生物学方法鉴定。结论PCR-RFLP方法酶切后两种念珠菌带型区分明显,可以鉴别大部分临床菌株。基因测序是该方法有意义的补充。  相似文献   

16.
Stunted European hazel (Corylus avellana L.) plants showing leaf yellowing were observed in south‐eastern Poland. Phytoplasma‐specific primers P1/P7 and R16F2n/R16R2, as well as primers specific for aster yellows (16SrI), X‐disease (16SrIII) and apple proliferation (16SrX) groups were singly used in nested polymerase chain reaction (PCR) to amplify the 16S rDNA from 22 symptomatic and asymptomatic hazel plants. Restriction fragment length polymorphism with MseI, HhaI, RsaI and BfaI enzymes of the 16S rRNA gene fragments amplified with the primers R16F2n/R16R2 from three symptomatic hazel plants of cvs Katalonski, Webba and Halle revealed patterns identical to those from the AY1 strain related to ‘Candidatus Phytoplasma asteris’. The nucleotide sequence analysis confirmed this result. This is the first report of the natural occurrence of ‘Ca. P. asteris’ in European hazel in Poland.  相似文献   

17.
In 2005, rose plants (Rosa rugosa cv. ‘Plena’) exhibiting typical phytoplasma disease symptoms of stunting, yellowing, witches’‐broom and dieback were observed in Pingyin, Shandong Province, China. The disease, rose witches’‐broom (RoWB), is progressively destructive and can be graft‐transmitted. Polymerase chain reaction (PCR), sequencing of PCR products and electron microscopy were used to investigate the possible association of phytoplasma with RoWB. All results indicated that presence of phytoplasma in the symptomatic rose plants. Sequence alignment of 16S rRNA gene, tuf gene and rp gene confirmed that the phytoplasma associated with RoWB is the causal agent of Paulownia witches’‐broom disease, which might be transmitted from the paulownia tree that is several meters away. To our knowledge, this is the first report of the molecular characterization of phytoplasma infecting rose in China.  相似文献   

18.
A phytoplasma disease, `stolbur', affects pepper ( Capsicum annuum ) in Spain. Affected plants have short internodes, green flowers buds and other symptoms that are characteristic of phytoplasma-induced diseases. Herein the detection and classification of the phytoplasma that may cause the disease is reported. DNA amplification by polymerase chain reaction, sequencing and phylogenetic analysis indicate that this phytoplasma should be classified in the clover proliferation group 16SrVI, a group that is clearly distinct from the stolbur group 16SrXII.  相似文献   

19.
In the year 2010, in a survey in Guangxi Province, China, to detect and characterize phytoplasmas in a huanglongbing (HLB)‐infected grapefruit (Citrus paradisi) orchard, 87 leaf samples with symptoms of blotchy mottle were collected from symptomatic grapefruit trees, and 320 leaf samples from symptomless trees adjacent to the symptomatic trees. Nested polymerase chain reaction (PCR) using universal phytoplasma primer set P1/P7 followed by primer set fU5/rU3 identified 7 (8.0%) positive samples from symptomatic samples but none from symptomless samples. Of the 87 symptomatic samples, 77 (88.5%) were positive for ‘Candidatus Liberibacter asiaticus’ and 5 for both phytoplasma and ‘Ca. L. asiaticus’. Sequence analysis indicated that seven 881‐bp amplicons, amplified by nested phytoplasma primer sets P1/P7 and fU5/rU3, shared 100.0% sequence identity with each other. Genome walking was then performed based on the 881 bp known sequences, and 5111 bp of upstream and downstream sequences were obtained. The total 5992 bp sequences contained a complete rRNA operon, composed of a 16S rRNA gene, a tRNAIle gene, a 23S rRNA gene and a 5S rRNA gene followed by eight tRNA genes. Phylogenetic analysis and virtual restriction fragment length polymorphism analysis confirmed the phytoplasma was a variant (16SrII‐A*) of phytoplasma subgroup 16SrII‐A. As phytoplasmas were only detected in blotchy‐mottle leaves, the 16SrII‐A* phytoplasma identified was related to HLB‐like symptoms.  相似文献   

20.
Tomato big bud was detected for the first time in tomato plants (Lycopersicon esculentum Mill.) in the eastern region (Al‐Mafraq) of Jordan. Infected plants showed proliferation of lateral shoots, hypertrophic calyxes and greening of flower petals. The presence of phytoplasmas in diseased tomato plants was demonstrated using polymerase chain reaction (PCR) assays. The amplified DNAs yielded products of 1.8 kb (primer pair P1/P7) and 1.2 kb (primer pair R16F2/R2) by direct and nested‐PCR, respectively. DNA from tomato isolates T1 and T2 could not be amplified in the nested‐PCR assays when the aster yellow‐specific primer pair R16(1)F1/R1 was used, suggesting that the phytoplasma in these isolates is not genetically related to the 16SrI (aster yellows) group. After restriction fragment length polymorphism (RFLP) analyses, using four endonuclease enzymes (HhaI, RsaI, AluI and Bsp143I) similar patterns were formed among the digested 1.2 kb PCR products of two tomato isolates suggesting that both isolates belonged to the same phytoplasma. Compared with the RFLP profile of the reference strains, no difference in the digestion pattern was found between the tomato isolates and that of the catharanthus phyllody agent from Sudan, indicating that the phytoplasma belongs to 16SrDNA VI (clover proliferation) group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号