首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The carboxyl-terminal Src kinase (Csk) is an indispensable negative regulator for the Src family tyrosine kinases (SFKs) that play pivotal roles in various cell signalings. To understand the molecular basis of the Csk-mediated regulation of SFKs, we elucidated the crystal structure of full-length Csk. The Csk crystal consists of six molecules classified as active or inactive states according to the coordinations of catalytic residues. Csk assembles the SH2 and SH3 domains differently from inactive SFKs, and their binding pockets are oriented outward enabling the intermolecular interaction. In active molecules, the SH2-kinase and SH2-SH3 linkers are tightly stuck to the N-lobe of the kinase domain to stabilize the active conformation, and there is a direct linkage between the SH2 and the kinase domains. In inactive molecules, the SH2 domains are rotated destroying the linkage to the kinase domain. Cross-correlation matrices for the active molecules reveal that the SH2 domain and the N-lobe of the kinase domain move as a unit. These observations suggest that Csk can be regulated through coupling of the SH2 and kinase domains and that Csk provides a novel built-in activation mechanism for cytoplasmic tyrosine kinases.  相似文献   

2.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its carboxy-terminal tail. A kinase that phosphorylates Tyr527, called Csk, has recently been identified. We expressed c-Src in yeast to test the role of the SH2 and SH3 domains of Src in the negative regulation exerted by Tyr527 phosphorylation. Inducible expression of c-Src in Schizosaccharomyces pombe caused cell death. Co-expression of Csk counteracted this effect. Src proteins mutated in either the SH2 or SH3 domain were as lethal as wild type c-Src, but were insensitive to Csk, even though they were substrates for Csk in vivo. Peptide binding experiments revealed that Src proteins with mutant SH3 domains adopted a conformation in which the SH2 domain was not interacting with the tail. These data support the model of an SH2 domain-phosphorylated tail interaction repressing c-Src activity, but expand it to include a role for the SH3 domain. We propose that the SH3 domain contributes to the maintenance of the folded, inactive configuration of the Src molecule by stabilizing the SH2 domain-phosphorylated tail interaction. Moreover, the system we describe here allows for further study of the regulation of tyrosine kinases in a neutral background and in an organism amenable to genetic analysis.  相似文献   

3.
The C-terminal Src kinase p50csk phosphorylates Src family tyrosine kinases and down-regulates their activity in vitro. To gain insight into the cellular functions of this potentially antioncogenic enzyme, we have overexpressed the csk cDNA by using an inducible promoter in HeLa cells. Despite some differences in basal Src activity in the clones analyzed, Src activity was not significantly suppressed, while the amount of p50csk and Csk activity increased at least 10-fold during 3 days of induction. Immunofluorescence for the induced p50csk was localized in the cytoplasm and distinctly in focal adhesions, in which the amount of phosphotyrosine containing proteins was also increased. Point and deletion mutagenesis experiments showed that localization in focal adhesions was dependent on the SH2 and SH3 domains of Csk but not on its catalytic activity. Csk formed a complex with the focal adhesion protein paxillin in cells, and its SH2 domain was shown to interact with pp125FAK and paxillin in vitro. After Csk induction, the cells became spherical and more loosely attached to the culture substratum, and the alpha v beta 5 integrin complex (vitronectin receptor) of focal adhesions was redistributed to a novel type of structure consisting of punctate plaques on the ventral cell surface. These phenotypic changes occurred in several clones analyzed and were totally reversible when Csk was switched off, but they did not occur in cells overexpressing the catalytically inactive Csk R-222 mutant or luciferase. Our results thus show that a fraction of cellular Csk is targeted to focal adhesions via its SH2 and SH3 domains, probably interacting with tyrosyl-phosphorylated focal adhesion proteins. They also suggest that Csk is involved in the regulation of integrins controlling cell attachment and shape.  相似文献   

4.
The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.  相似文献   

5.
Lin X  Ayrapetov MK  Lee S  Parang K  Sun G 《Biochemistry》2005,44(5):1561-1567
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.  相似文献   

6.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

7.
The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the β3-αC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the β3-αC loop. The mutation of the β3-αC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the β3-αC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain.  相似文献   

8.
The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.  相似文献   

9.
In addition to the C-terminal catalytic domain, Csk is a protein tyrosine kinase that has an N-terminal regulatory region that contains SH3 and SH2 domains. The role this region plays relative to the function of the catalytic domain is not clear. To study its role, we introduced either deletion or site-specific mutations within this region and analyzed the effect of such mutations on the catalytic activity of Csk and its ability to phosphorylate/inactivate Src protein tyrosine kinase, its physiological substrate in the cell. Deletion of the SH3 domain and the SH2 domain resulted in reductions of kinase activity by 70 and 96%, respectively. Mutations within the SH2 domain that abolished its ability to bind phosphotyrosine did not result in a significant loss of kinase activity. Mutation of Ser78 to Asp, located between the SH3 and the SH2 domains, resulted in a reduction of over 90% of the catalytic activity. The reduction in specific activity is not the result of any apparent physical instability of the mutants. Kinetic analyses indicate that the mutations did not affect the Km values for ATP-Mg or the polypeptide substrate. The ability of the mutants to phosphorylate and inactivate Src is directly correlated to their kinase activity. These results indicate that the regulatory region is important in optimizing the kinase activity of the catalytic domain, but apparently plays no direct or specific role in substrate recognition.  相似文献   

10.
Lu TL  Kuo FT  Lu TJ  Hsu CY  Fu HW 《Cellular signalling》2006,18(11):1977-1987
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, has been correlated with cell proliferation. PAR1 is activated by the irreversibly proteolytic cleavage, internalized via clathrin-coated pits, and then sorted to lysosomes for degradation. Caveolae play important roles in both signaling transduction and internalization of several GPCRs. However, the role of caveolae in cellular signaling and trafficking of PAR1 is still unclear. In this study, we show that PAR1 was partially localized in caveolae. Disruption of caveolae by cholesterol depletion did not inhibit PAR1 internalization, indicating that internalization of PAR1 was not via caveolae. Of interest, activation of PAR1 resulted in the phosphorylation of caveolin-1, a principal component of caveolae, on tyrosine 14 by a Gi-linked Src kinase pathway and p38 mitogen-activated protein kinase. Analysis of immunoprecipitates from cells stimulated by PAR1 showed that phosphocaveolin-1 but not caveolin-1 with mutation at tyrosine 14 could bind to Csk. In addition, phosphocaveolin-1 could not bind to CskS109C mutant with the defective SH2 domain. These results indicated that phosphocaveolin-1 was associated with the SH2 domain of Csk in response to PAR1 activation. The association further resulted in a rapid decrease in Src kinase activity. Thus, PAR1-induced Src activation is negatively regulated by recruiting Csk through phosphocaveolin-1. Our results also reveal that phosphocaveolin-1 represents a novel effector of PAR1 to downregulate Src kinase activity. The downregulation of PAR1-induced Src activation mediated by phosphocaveolin-1 provides an additional mechanism for the termination of PAR1 signaling at its downstream molecules.  相似文献   

11.
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.  相似文献   

12.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

13.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

14.
Wang D  Huang XY  Cole PA 《Biochemistry》2001,40(7):2004-2010
Phosphorylation of a critical tail tyrosine residue in Src modulates its three-dimensional structure and protein tyrosine kinase activity. The protein tyrosine kinase Csk is responsible for catalyzing the phosphorylation of this key Src tyrosine residue, but the detailed molecular basis for Src recognition and catalysis is poorly understood. In this study, we investigate this phosphorylation event using purified recombinant Csk and Src proteins and mutants. It was shown that the apparent k(cat) and K(m) values for Csk phosphorylation of catalytically impaired Src (dSrc) are similar to the parameters for Csk-catalyzed phosphorylation of the Src family member Lck. The SH3 (Src homology 3) and SH2 (Src homology 2) domains of dSrc were fully dispensable with respect to rapid phosphorylation, indicating that the catalytic domain and tail of dSrc are sufficient for the high efficiency of dSrc as a substrate. Of the eight Src tail residues examined, only the fully conserved Glu (Y-3 position) and Gln (Y-1 position) investigated by alanine scanning mutagenesis caused large reductions (10--40-fold) in dSrc substrate efficiency. The Y-3 Glu requirement was stringent as conservative replacements with Asp or Gln were no better than Ala whereas replacement of the Y-1 Gln with Ile was readily tolerated. Interestingly, en bloc replacement of the tail with a seven amino acid consensus sequence derived from a peptide library analysis was no better than the wild-type sequence. Surprisingly, the dSrc Y527F protein, although not a Csk substrate, enhanced Csk-catalyzed phosphorylation of dSrc. These results and other data suggest that Src dimerization (or higher order oligomerization) is important for high-efficiency Csk-catalyzed phosphorylation of the Src tail.  相似文献   

15.
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.  相似文献   

16.
The SH2 domain is required for high catalytic activity in the COOH-terminal Src kinase (Csk). Previous solution studies suggest that a short peptide sequence, the SH2-kinase linker, provides a functional connection between the active site and the distal SH2 domain that could underlie this catalytic phenomenon. Substitutions in Phe183 (tyrosine, alanine, and glycine), a critical hydrophobic residue in the linker, result in large decreases in substrate turnover and large increases in the K(m) for ATP. Indeed, F183G possesses kinetic parameters that are similar to that for a truncated form of Csk lacking the SH2 domain, suggesting that a single mutation disrupts communication between this domain and the active site. Based on equilibrium and stopped-flow fluorescence experiments, the elevated K(m) values for the mutants are due to changes in the rates of phosphoryl transfer and not to reduced ATP-binding affinities. Based on hydrogen-deuterium exchange experiments, glycine substitution reduces flexibility in several polypeptide regions in Csk, tyrosine substitution increases flexibility, and alanine substitution leads to mixed effects compared to wild-type. Normal mode analysis indicates that Phe183 and its environment are under strain, a theoretical finding that supports the results of mutations. Overall, the data indicate that domain-domain interactions, controlled through the SH2-kinase linker, provide a dynamic balance within the Csk framework that is ideal for efficient phosphoryl transfer in the active site.  相似文献   

17.
Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src-GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.  相似文献   

18.
Src family protein-tyrosine kinases are regulated by intramolecular binding of the SH2 domain to the C-terminal tail and association of the SH3 domain with the SH2 kinase-linker. The presence of two regulatory interactions raises the question of whether disruption of both is required for kinase activation. To address this question, we engineered a high affinity linker (HAL) mutant of the Src family member Hck in which an optimal SH3 ligand was substituted for the natural linker. Surface plasmon resonance analysis demonstrated tight intramolecular binding of the modified HAL sequence to SH3. Hck-HAL was then combined with a tail tyrosine mutation (Y501F) and expressed in Rat-2 fibroblasts. Surprisingly, Hck-HAL-Y501F showed strong transforming and kinase activities, demonstrating that intramolecular SH3-linker release is not required for SH2-based kinase activation. In Saccharomyces cerevisiae, which lacks the negative regulatory tail kinase Csk, wild-type Hck was more strongly activated in the presence of an SH3-binding protein (human immunodeficiency virus-1 Nef), indicating persistence of native SH3-linker interaction in an active Hck conformation. Taken together, these data support the existence of multiple active conformations of Src family kinases that may generate unique downstream signals.  相似文献   

19.
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.  相似文献   

20.
C‐terminal Src kinase (Csk) that functions as an essential negative regulator of Src family tyrosine kinases (SFKs) interacts with tyrosine‐phosphorylated molecules through its Src homology 2 (SH2) domain, allowing it targeting to the sites of SFKs and concomitantly enhancing its kinase activity. Identification of additional Csk‐interacting proteins is expected to reveal potential signaling targets and previously undescribed functions of Csk. In this study, using a direct proteomic approach, we identified 151 novel potential Csk‐binding partners, which are associated with a wide range of biological functions. Bioinformatics analysis showed that the majority of identified proteins contain one or several Csk‐SH2 domain‐binding motifs, indicating a potentially direct interaction with Csk. The interactions of Csk with four proteins (partitioning defective 3 (Par3), DDR1, SYK and protein kinase C iota) were confirmed using biochemical approaches and phosphotyrosine 1127 of Par3 C‐terminus was proved to directly bind to Csk‐SH2 domain, which was consistent with predictions from in silico analysis. Finally, immunofluorescence experiments revealed co‐localization of Csk with Par3 in tight junction (TJ) in a tyrosine phosphorylation‐dependent manner and overexpression of Csk, but not its SH2‐domain mutant lacking binding to phosphotyrosine, promoted the TJ assembly in Madin‐Darby canine kidney cells, implying the involvement of Csk‐SH2 domain in regulating cellular TJs. In conclusion, the newly identified potential interacting partners of Csk provided new insights into its functional diversity in regulation of numerous cellular events, in addition to controlling the SFK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号