首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Action spectra derived from dose-response curves measured for various processes associated with chloroplast development in Euglena gracilis var. bacillaris are presented. The action spectrum for chlorophyll synthesis during the first 36 hours of continuous illumination of dark-grown resting cells resembles the absorption spectrum of protochlorophyll(ide). The action spectrum for the preillumination phase of potentiation, during which preillumination followed by a dark period brings about lag elimination in chlorophyll synthesis when the cells are subsequently exposed to postilluminating light, shows a high peak in the blue region (at about 433 nm) with a small peak in the yellow-orange region (at about 597 nm); the postillumination phase yields an action spectrum very similar to that obtained for chlorophyll synthesis in continuous light in normal, unpotentiated cells, with peaks at 433 and 631 nm. Alkaline DNase and TPN-linked triose phosphate dehydrogenase, two plastid enzymes which are synthesized outside the chloroplast, yield action spectra which are consistent with protochlorophyll(ide) being the major light receptor. The action spectra which implicate pigments resembling protochlorophyll(ide) holochrome have blue to red peak ratios in the vicinity of 5:1 as does the absorption spectrum of the protochlorophyllide holochrome from beans; the action spectrum is not identical with the holochrome spectrum indicating that the Euglena holochrome may differ from the bean pigment in details of its absorption spectrum. The action spectrum for preillumination, shows a ratio of the blue peak to the red effectiveness of about 24:1. This suggests that preillumination is controlled by a photoreceptor different from the protochlorophyll(ide) holochrome.  相似文献   

2.
The stability against high intensity irradiation (red light, 700 W m2) was investigated for the chlorophyll(ide) pigments formed after photoreduction of the protochlorophyllide in dark grown leaves of wheat. Connections were found between changes in absorption spectrum in vivo (the Shibata shift and the late red-shift) and changes in photostability both in young (five-day) and old (12-day) leaves. The photostability of both the 684-form and the 673-form as well as the rate of the changes in photostability (the Shibata shift and the late red-shift) decreased with the age of the dark grown plants. It was concluded that the more pronounced decrease in the chlorophyll(ide) contents found at irradiation of older dark grown leaves mostly depended on the lower rate of the changes in the photostability of the pigment in old leaves. No resynthesis of protochlorophyllide occurred before the onset of the late red-shift. The results and their connection with the lag in chlorophyll formation are discussed. This lag is more pronounced in older dark grown wheat.  相似文献   

3.
Red light exposures given to dark-grown wheat seedlings (Triticum aestivum L.) prior to etioplast isolation reduced the ability of these organelles to consume O2. The same preharvest red light exposures also decreased protochlorophyll(ide) content of etioplasts. In addition, regeneration of both O2 uptake rates as well as protochlorophyll(ide) levels followed a parallel time course. These similarities suggested that photoconversion of protochlorophyll(ide)-650 to chlorophyll(ide) may mediate some process with O2 as the electron acceptor. This process appears to involve photooxidation of nonphotoconvertible protochlorophyll(ide) as well as of newly formed chlorophyll(ide). This hypothesis is further supported by the observations that: (a) the in vitro light induced O2 uptake phenomenon was observed in solubilized protochlorophyll(ide) holochrome preparations; and (b) photoinduced O2 uptake was reduced to zero rate by light exposure time equivalent to that required for chlorophyll(ide) and nonphotoconvertible protochlorophyll(ide) destruction.  相似文献   

4.
The stability against high intensity irradiation (red light, 700 W m?2) was investigated for the chlorophyll(ide) pigments formed after the primary photoreduction of the protochlorophyll(ide) in dark grown leaves of wheat. After photoreduction, most of the chlorophyll(ide) exists in a form with an absorption maximum at 684 nm. This form is gradually transformed into a form with an absorption maximum at 673 nm (the Shibata shift). It was possible to ascribe a specific photostability to each of the pigment forms. This photostability was higher for the 673-form than for the 684-form. A red-shift in the absorption maximum following upon the Shibata shift, reflects the successive transformation of the 673-form into other pigment forms, which were quite photostable at the intensity used.  相似文献   

5.
Klein S  Katz E  Neeman E 《Plant physiology》1977,60(3):335-338
A short illumination of etiolated maize (Zea mays) leaves with red light causes a protochlorophyll(ide)-chlorophyll(ide) conversion and induces the synthesis of δ-aminolevulinic acid (ALA) during a subsequent dark period. In leaves treated with levulinic acid, more ALA is formed in the dark than in control leaves. Far red light does not cause a conversion of protochlorophyll(ide) into chlorophyll(ide) and does not induce accumulation of ALA in the dark. Both red and far red preilluminations cause a significant potentiation of ALA synthesis during a period of white light subsequent to the dark period. The results indicate a dual light control of ALA formation. The possible role of phytochrome and protochlorophyllide as photoreceptors in this control system is discussed.  相似文献   

6.
Golenkinia, Chlorella protothecoides, and mutant C-2A′ of Scenedesmus were grown in darkness and on media in which chlorophyll synthesis is reduced significantly. The pigments were analyzed by spectrophotometry or by paper chromatography and compared with similar extracts from light-grown algae and dark-grown beans. No protochlorophyll(ide) was present in the dark-grown algae indicating that chlorophyll synthesis is blocked by a mechanism other than feedback regulation of aminolevulinic acid synthesis by protochlorophyll(ide) which has been proposed for flowering plants.  相似文献   

7.
In Euglena gracillis var bacillaris, light exposure increases the level of mRNA encoding the light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCPII) approximately twofold. LHCPII mRNA levels increased in the dark upon either malate or ethanol addition. LHCPII mRNA is present but LHCPII is not synthesized in the bleached mutants W3BUL and W10BSmL, which lack protochlorophyll(ide) and most if not all of the chloroplast genome. Light exposure increased LHCPII mRNA levels in W3BUL but not in W10BSmL. Carbon availability and light acting through a nonchloroplast photoreceptor appear to regulate LHCPII mRNA levels. A chloroplast photoreceptor and/or a product produced by the chloroplast appear to regulate LHCPII mRNA translation.  相似文献   

8.
Mathis P  Sauer K 《Plant physiology》1973,51(1):115-119
In the evolution of the absorption spectrum of etiolated bean leaves (Phaseolus vulgaris L.) following illumination, a rapid photoconversion of 50% or more of the active protochlorophyllide at room temperature is followed by a shift of the chlorophyll(ide) absorption maximum: C678→ →C684→C672 nm. Kinetic studies at 2 C and the absence of an isosbestic point provide evidence for an intermediate between C678 and C684. A dramatically different evolution is observed following the photoconversion of only 5 to 30% of the active protochlorophyllide at room temperature. C672 appears within 30 seconds, and no subsequent dark shift occurs during the following 90 minutes. At 0 C, conversion of 5% of the active protochlorophyllide produces a new species, C676, which converts progressively to C672 within 10 minutes. We interpret the results in terms of two photochemical steps operating in series for the complete conversion of active protochlorophyllide. Furthermore, there appears to be competition between an irreversible, terminal dark shift and the second light reaction. We propose a scheme based on dimers of protochlorophyllide reduced stepwise to dimers of chlorophyllide in two successive light reactions. The intermediate mixed protochlorophyllide-chlorophyllide dimer absorbs at 676 nm and displays a much faster dissociation to monomers than does the chlorophyllide-chlorophyllide dimer.  相似文献   

9.
Wang WY 《Plant physiology》1980,65(3):451-454
When seeds of Echinochloa crusgalli var. oryzicola are germinated in dark anaerobic conditions (99.995% N2), the seedlings do not have detectable protochlorophyll(ide). Two hours after exposure to light aerobic conditions, they begin to synthesize chlorophyll. The lag in greening is shorter in seedlings exposed to light for 24 hours before exposure to air. Seedlings maintained in light anaerobic conditions exhibit no lag in greening upon transfer to an aerobic environment. Preillumination of anaerobically grown seedlings does not result in any chlorophyll accumulation. Phytochrome is probably the receptor for photoactivation of chlorophyll synthesis, since activation is achieved by red light alone, but not by far red light or red plus far red light. The cytochrome oxidase activity in anaerobically germinated seedlings is 30% of the normal level found in aerobically grown seedlings. Preillumination was also found to activate the ability of anaerobically germinated seedlings to increase their cytochrome oxidase activity upon exposure to air.  相似文献   

10.
Beale SI  Chen NC 《Plant physiology》1983,71(2):263-268
The ability of N-methyl mesoporphyrin IX (NMMP) to block heme synthesis by specifically inhibiting enzymic iron insertion into protoporphyrin IX was exploited to test whether heme is a precursor of the bilin chromophore of phycocyanin (PC). A strain of the unicellular rhodophyte Cyanidium caldarium which forms normal amounts of both chlorophyll (Chl) and PC in the dark was employed to avoid phototoxic effects of exogenous porphyrins. Relative Chl and PC content were assayed spectrophotometrically on whole cell suspensions.

When cells were grown in the dark on a glucose-based heterotrophic medium at 42°C, neither division rate nor Chl synthesis was affected by NMMP up to 3.0 micromolar and for as long as 72 hours. NMMP had a dose-dependent inhibitory effect on PC synthesis. PC to Chl absorbance ratios, relative to control cell values, were 100%, 89%, 86%, and 50% in cells grown for 48 hours with 0.3, 1.0, 3.0, and 10.0 micromolar NMMP, respectively. NMMP also caused the accumulation of intracellular protoporphyrin.

The ability of NMMP to cause intracellular accumulation of protoporphyrin and to block PC synthesis specifically while allowing normal Chl formation is consistent with its action as a specific inhibitor of enzymic iron chelation, and supports the role of heme as a precursor to the phycobilins.

  相似文献   

11.
The protochlorophyll(ide) present in primary roots of dark-grown corn (Zea mays) seedlings has an in vivo absorption maximum at 634 nm. Red light converts the pigment to chlorophyll(ide) a with an absorption maximum at 675 nm.  相似文献   

12.
Chlorophyll Synthesis in Dark-Grown Pine Primary Needles   总被引:1,自引:0,他引:1  
The pigment content of dark-grown primary needles of Pinus jeffreyi L. and Pinus sylvestris L. was determined by high-performance liquid chromatography. The state of protochlorophyllide a and of chlorophylls during dark growth were analyzed by in situ 77 K fluorescence spectroscopy. Both measurements unambiguously demonstrated that pine primary needles are able to synthesize chlorophyll in the dark. Norflurazon strongly inhibited both carotenoid and chlorophyll synthesis. Needles of plants treated with this inhibitor had low chlorophyll content, contained only traces of xanthophylls, and accumulated carotenoid precursors. The first form of chlorophyll detected in young pine needles grown in darkness had an emission maximum at 678 nm. Chlorophyll-protein complexes with in situ spectroscopic properties similar to those of fully green needles (685, 695, and 735 nm) later accumulated in untreated plants, whereas in norflurazon-treated plants the photosystem I emission at 735 nm was completely lacking. To better characterize the light-dependent chlorophyll biosynthetic pathway in pine needles, the 77 K fluorescence properties of in situ protochlorophyllide a spectral forms were studied. Photoactive and nonphotoactive protochlorophyllide a forms with emission properties similar to those reported for dark-grown angiosperms were found, but excitation spectra were substantially red shifted. Because of their lower chlorophyll content, norflurazon-treated plants were used to study the protochlorophyllide a photoreduction process triggered by one light flash. The first stable chlorophyllide photoproduct was a chlorophyllide a form emitting at 688 nm as in angiosperms. Further chlorophyllide a shifts usually observed in angiosperms were not detected. The rapid regeneration of photoactive protochlorophyllide a from nonphotoactive protochlorophyllide after one flash was demonstrated.  相似文献   

13.
Protochlorophyllide and chlorophyll(ide) holochromes (Pchl-H and Chl-H) were extracted from dark-grown and greening seedlings with saponin and partly purified by ammonium sulfate fractionation. Sephadex gel filtration in the presence of saponin showed that the photoactive saponin Pchl-H from dark-grown leaves of bean (Phaseolus vulgaris L. cv. Redlands Pioneer) or pea (Pisum sativum L. cv. Greenfeast) has an apparent molecular weight of about 170,000, compared with 51,000 to 75,000 for the saponin Pchl-H from barley (Hordeum vulgare L. cv. Svalöfs Bonus). Photoconversion of saponin Pchl-H from dark-grown barley seedlings yields Chl-H with an absorption maximum at 678 nm, and with no change in apparent molecular weight. Above 0 C, a spectral shift from 678 to 672 nm follows, and a change in apparent molecular weight from about 63,000 to 29,000 is observed.  相似文献   

14.
By spectral methods, the final stages of chlorophyll formation from protochlorophyll (ide) were studied in heterotrophic cells of Chlorella vulgaris B-15 mutant, where chlorophyll dark biosynthesis is inhibited. It was shown that during the dark cultivation, in the mutant cells, in addition to the well-known protochlorophyll (ide) forms Pchlide 655/650, Pchl(ide) 640/635, Pchl(ide) 633/627, a long-wavelength protochlorophyll form is accumulated with fluorescence maximum at 682 nm and absorption maximum at 672 nm (Pchl 682/672). According to the spectra measured in vivo and in vitro, illumination of dark grown cells leads to the photoconversion of Pchl 682/672 into the stable long wavelength chlorophyll native form Chl 715/696. This reaction was accompanied by well-known photoreactions of shorter-wavelength Pchl (ide) forms: Pchlide 655/650Chlide 695/684 and Pchl (ide) 640/635Chl (ide) 680/670. These three photoreactions were observed at room temperature as well as at low temperature (203–233 K).Abbreviations Chl chlorophyll - Chlide chlorophyllide - Pchlide protochlorophyllide - Pchl protochlorophyll - PS I RC Photosystem I reaction centres. Abbreviations for native pigment forms: the first number after the pigment symbol corresponds to maximum position of low-temperature (77 K) fluorescence band (nm), second number to maximum position of long-wavelength absorption band  相似文献   

15.
Fluorescence time curves (Kautsky effect) were studied in anaerobic Scenedesmus obliquus, with an apparatus capable of simultaneous recording of O2 exchange, and far-red actinic illumination. Results, as interpreted in terms of electron transport reactions, suggest: In the course of becoming anaerobic, fluorescence induction undergoes a series of changes, indicating at least three different effects of the absence of O2 on electron transport. (1) Immediately on removal of O2, once the pool of intermediates between the two photo-systems is reduced by light reaction II, electron flow stops, resulting in high fluorescence yield and a cessation of O2 evolution. O2 appears to regulate linear electron flow and cyclic feedback of electrons to the intermediate pool. (2) An endogenous reductant formed anaerobically reduces the System II acceptors in the dark. The time course of this reduction is at least biphasic, indicative of inhomogeneity of the primary acceptor pool. Prolonged dark anaerobic treatment induces maximal initial fluorescence which decays rapidly in light and with a System I action spectrum. (3) Anaerobic treatment eventually results in deactivation of the oxidizing side of System II, limiting System II even when the acceptors are oxidized by System I pre-illumination.  相似文献   

16.
The structure and physiology of the etioplast was investigated in developing primary leaves of 3- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Increase in total protochlorophyll(ide) content followed that of leaf fresh weight. In 3- to 4-day-old bean leaves more than 50% of the protochlorophyll(ide) is in the form of protochlorophyll(ide) 628, which is nontransformable by light. Most of the transformable pigment is protochlorophyll(ide) 635, with smaller amounts of protochlorophyll(ide) 650. During leaf development from the 3rd to the 7th day phototransformable protochlorophyll(ide) with an absorbance maximum at 650 nm accumulates faster than nontransformable protochlorophyll(ide) or protochlorophyll(ide) 635. This increase in protochlorophyll(ide) 650 is correlated with the formation and enlargement of prolamellar bodies.  相似文献   

17.
5-Aminolevulinic acid (ALA) accumulation in dark-grown tobaccocallus cells in the presence of levulinic acid (LA) was followedunder blue or red light or in continuous darkness. Significantformation of ALA continued in the dark. The protochlorophyll-(ide) (Pchl) content of dark-incubated cells remained low becauseof its turnover. We inferred that the feedback inhibition ofALA synthesis by Pchl would not occur in darkincubated calluscells. ALA formation was enhanced by blue light, and this effectreached saturation at an intensity of about 800 mW.m–2.Neither weak nor strong red light affected ALA formation. Fullenhancement of ALA formation by blue light was attained afterfairly long continuous illumination of the callus cells. Thisblue lightenhanced activity of ALA synthesis declined very slowlyduring the subsequent dark incubation. The blue light enhancement of ALA formation was observed incallus cells supplied with sucrose over a wide range of concentrations.Pchl regeneration in carbon-starved callus cells, supplied withglutamate at various concentrations, was also markedly enhancedby blue light. Respiration of the callus cells was not enhancedby blue light. A possible role of blue light in regulating ALAformation in callus cells is discussed. 1Dedicated to the late Professor Joji Ashida. (Received September 3, 1982; Accepted April 5, 1983)  相似文献   

18.
Millerd A  Goodchild DJ  Spencer D 《Plant physiology》1969,44(4):567-569,571,573,575,577,579,581-583
In the Zea mays L. mutant M11 grown in the dark at 15°, the ultrastructure of the etioplast is abnormal. The pigment content of the etioplasts is reduced but the in vivo absorption characteristics suggest that the normal protochlorophyll (ide)-holochrome is present. The lowered synthetic ability of the etioplasts is not primarily due to a reduced complement of plastid ribosomes. The plastids of mutant M11 grown in the light at 15° contain little pigment, are markedly deficient in ribosomes and their ultrastructure is abnormal. In mutant M11 grown at 15°, an extreme sensitivity of the plastid membranes to light was observed.  相似文献   

19.
The kinetics of accumulation of light harvesting chlorophyll (Chl) a/b-binding polypeptides (LHCPs) in thylakoid membranes were analyzed during greening of Chlamydomonas reinhardtii y-1 at 38°C. Initial accumulation of LHCPs in thylakoid membranes was linear; LHCP precursors or polypeptides in transit within the chloroplast stroma were not detected. The rate of accumulation in the light was at least five-fold greater than that in the dark. The relatively small amount of LHCPs that accumulated in the dark was integrated properly in the membrane, as judged by the pattern of cleavage in vitro by exogenous proteases, and did not turn over at a significant rate in vivo. The kinetic data suggested that in y-1 cells either translation of LHCP mRNA was inhibited in the dark or newly synthesized polypeptides were degraded concurrently with transport into the chloroplast unless rescued by Chl. LHCPs accumulated in cells of the Chl b-deficient strain pg-113 at the same rate in the dark or the light at 38°C, an indication that light did not affect translation of LHCP mRNA. Membrane-associated LHCPs in pg-113 cells were completely degraded, in contrast to those in y-1 cells, by exogenous proteases, which suggested that pg-113 cells are deficient in a proteolytic activity. A peptidase was recovered from y-1 cells in a membrane fraction with a buoyant density slightly less than that of thylakoid membranes. Although a role for this activity in degradation of LHCPs has not been established, the specific activity of this peptidase in pg-113 cells was only 10 to 15% of the level in y-1 cells.  相似文献   

20.
Five-day-old etiolated cucumber (Cucumis sativus L. var. Alpha Green) cotyledons produced more chlorophyll over a 4-hour illumination period after a prolonged exposure (12 to 72 hours) in the dark to ethylene concentrations ranging from 0.1 to 10 μl/l. Intact seedlings and excised cotyledons responded in the same way to this treatment. This effect does not involve a shortening of the lag phase of chlorophyll accumulation. Exposure of cotyledons to ethylene during the illumination period did not produce the same stimulatory effect on chlorophyll synthesis and, under certain conditions, chlorophyll synthesis was slightly inhibited by exposure to ethylene in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号