首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Studies on histone phosphorylation during transitions in chromatin structure occurringin vivoduring spermatogenesis and early embryogenesis in sea urchins are reviewed and evaluated in the light of recent studies on histone phosphorylation occurring during chromatin synthesis in frog egg extractsin vitroand evidence that protein kinases and phosphatases play direct roles in the regulation of cellular structure. Sperm-specific histone variants Sp H1 and Sp H2B are maintained as phosphorylated derivatives N and O/P throughout spermatogenesis and early embryogenesis and egg specific histone variants CS H1 and CS H2A are phosphorylated during early embryogenesis. These developmental correlations provide clues about the roles of histone phosphorylation in control of chromatin structurein vivoand provide a basis for the interpretation of data obtained from in-vitro sperm chromatin remodeling in egg extracts and from biochemical studies on the effects of histone phosphorylation on DNA binding. The potential consequences for chromatin structure of the various histone phosphorylation events observed in sea urchins and frog egg extracts are discussed.  相似文献   

3.
The sea urchin genome contains several histone gene families whose expression is regulated in a developmental and tissue-specific fashion. The Cleavage Stage (CS) histone subtype is synthesized in unfertilized eggs and in embryos until the third cell cycle. The Early (E) subtype is synthesized during embryogenesis from the 2-4 cell stage to blastula. The only variant produced from the mesenchyme blastula stage to adult is the Late (L) subtype. In addition, two "sperm-specific" histone genes (SpH1 and SpH2B) are expressed exclusively in testis and their corresponding products are incorporated in sperm chromatin. In this review I will describe in some detail what is known about the characteristics of the various histone subtypes, with special focus on the Sp variants, and discuss the possible meaning of the presence of these histone variants during sea urchin development.  相似文献   

4.
We had previously reported that a cysteine-protease catalyzes the sperm histones (SpH) degradation associated to male chromatin remodeling in sea urchins. We found that this protease selectively degraded the SpH leaving maternal cleavage stage (CS) histone variants unaffected, therefore we named it SpH-protease. It is yet unknown if the SpH-protease catalyzes the SpH degradation while these histones are organized as nucleosomes or if alternatively these histones should be released from DNA before their proteolysis. To investigate this issue we had performed an in vitro assay in which polynucleosomes were exposed to the active purified protease. As shown in this report, we found that sperm histones organized as nucleosomes remains unaffected after their incubation with the protease. In contrast the SpH unbound and free from DNA were readily degraded. Interestingly, we also found that free DNA inhibits SpH proteolysis in a dose-dependent manner, further strengthening the requirement of SpH release from DNA before in order to be degraded by the SpH-protease. In this context, we have also investigated the presence of a sperm-nucleosome disassembly activity (SNDA) after fertilization. We found a SNDA associated to the nuclear extracts from zygotes that were harvested during the time of male chromatin remodeling. This SNDA was undetectable in the nuclear extracts from unfertilized eggs and in zygotes harvested after the fusion of both pronuclei. We postulate that this SNDA is responsible for the SpH release from DNA which is required for their degradation by the cysteine-protease associated to male chromatin remodeling after fertilization.  相似文献   

5.
At intermediate stages of male pronucleus formation, sperm‐derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A‐H2B (SpH2A‐SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP‐ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine‐protease (SpH‐protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP‐ribose) moiety of these proteins. Because of the selectivity displayed by the SpH‐protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant α‐subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH‐protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling. J. Cell. Biochem. 76:173–180, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
The composition of nucleosomes at an intermediate stage of male pronucleus formation was determined in sea urchins. Nucleosomes were isolated from zygotes harvested 10 min post-insemination, whole nucleoprotein particles were obtained from nucleus by nuclease digestion, and nucleosomes were subsequently purified by a sucrose gradient fractionation. The nucleosomes derived from male pronucleus were separated from those derived from female pronucleus by immunoadsorption to antibodies against sperm specific histones (anti-SpH) covalently bound to Sepharose 4B (anti-SpH-Sepharose). The immunoadsorbed nucleosomes were eluted, and the histones were analyzed by Western blots. Sperm histones (SpH) or alternatively, the histones from unfertilized eggs (CS histone variants), were identified with antibodies directed against each set of histones. It was found that these nucleosomes are organized by a core formed by sperm histones H2A and H2B combined with two major CS histone variants. Such a hybrid histone core interacts with DNA fragments of approximately 100 bp. It was also found that these atypical nucleosome cores are subsequently organized in a chromatin fiber that exhibits periodic nuclease hypersensitive sites determined by DNA fragments of 500 bp of DNA. It was found that these nucleoprotein particles were organized primarily by the hybrid nucleosomes described above. We postulate that this unique chromatin organization defines an intermediate stage of male chromatin remodeling after fertilization.  相似文献   

7.
The variability of sperm histones was compared in two species of sea urchin. Whole sperm specific histones (SpH), were isolated from Tetrapygus niger (Arbacoida) and Parechinus angulosus (Echinoida). Individual histones were purified by chromatography on BioGel P-60 followed by reverse high pressure liquid chromatography (HPLC). The heterogeneity of each major histone type from T. niger was established from their HPLC elution patterns and further confirmed by electrophoresis in polyacrylamide gels containing 6 mM Triton X-100 combined with a transverse urea gradient (0--8 M). In T. niger, as well as in P. angulosus, a single form of SpH1 and SpH2A were found. In contrast, SpH2B was found to be heterogeneous, but represented by one major form in both species. The relatedness between both sets of histones was determined by establishing their immunological cross-reactivity. In this context, polyclonal antibodies elicited against T. niger sperm histones were assayed against individual histones from P. angulosus. From the results obtained, it emerged that histone SpH2A was the more closely related protein between these two species, followed by histone SpH1. In contrast, histone SpH2B was found to be only moderately related. These results confirm that SpH2A did not co-evolve with SpH2B, as was predicted for most species.  相似文献   

8.
At intermediate stages of male pronucleus formation, sperm-derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A-H2B (SpH2A-SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP-ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine-protease (SpH-protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP-ribose) moiety of these proteins. Because of the selectivity displayed by the SpH-protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant alpha-subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH-protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling.  相似文献   

9.
We have identified a 60-kDa cysteine protease that is associated with chromatin in sea urchin zygotes. This enzyme was found to be present as a proenzyme in unfertilized eggs and was activated shortly after fertilization. At a pH of 7.8–8.0, found after fertilization, the enzyme degraded the five sperm-specific histones (SpH), while the native cleavage-stage (CS) histone variants remained unaffected. Based on its requirements for reducing agents, its inhibition by sulfhydryl blocking compounds and its sensitivity to the cysteine-type protease inhibitors (2S,3S)-translator-epoxysuccinyl-L-leucyl-amido-3-methylbutane-ethyl-ester (E-64 d), cystatin and leupeptin, this protease can be defined as a cysteine protease. Consistently, this protease was not affected by the serine-type protease inhibitors phenylmethylsulfonyl fluoride (PMSF) and pepstatin. The substrate selectivity and pH modulation of the protease activity strongly suggest its role in the removal of sperm-specific histones, which determines sperm chromatin remodeling after fertilization. This suggestion was further substantiated by the inhibition of sperm histones degradation in vivo by E-64 d. Based on these three lines of evidence, we postulate that this cysteine protease is responsible for the degradation of sperm-specific histones which occurs during male pronucleus formation. J. Cell. Biochem. 67:304–315, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Sperm-specific histone variants in the sea urchin Paracentrotus lividus are replaced early after fertilization with a specific embryonic set of histone variants. A possible in vitro model for the involvement of a degradation mechanism in the replacement of sperm-specific histones is presented. Soluble sperm histones are shown to be degraded quickly by egg cytoplasm. The proteolytic activity is maximal at pH 3.0; H1 and H2A histones are the most sensitive while H3 and H4 are the most resistant. H2B histones have an intermediate sensitivity. Histone degradation by egg cytoplasm or by purified fractions of it can be inhibited by chymostatin and leupeptin and, to a lesser degree, by pepstatin.  相似文献   

11.
Male pronucleus formation involves sperm nucleus decondensation and sperm chromatin remodeling. In sea urchins, male pronucleus decondensation was shown to be modulated by protein kinase C and a cdc2-like kinase sensitive to olomoucine in vitro assays. It was further demonstrated that olomoucine blocks SpH2B and SpH1 phosphorylation. These phosphorylations were postulated to participate in the initial steps of male chromatin remodeling during male pronucleus formation. At final steps of male chromatin remodeling, all sperm histones (SpH) disappear from male chromatin and are subsequently degraded by a cysteine protease. As a result of this remodeling, the SpH are replaced by maternal histone variants (CS). To define if sperm nucleus decondensation is coupled with sperm chromatin remodeling, we have followed the loss of SpH in zygotes treated with olomoucine. SpH degradation was followed with anti-SpH antibodies that had no cross-reactivity with CS histone variants. We found that olomoucine blocks SpH1 and SpH2B phosphorylation and inhibits male pronucleus decondensation in vivo. Interestingly, the normal schedule of SpH degradation remains unaltered in the presence of olomoucine. Taken together these results, it was concluded that male nucleus decondensation is uncoupled from the degradation of SpH associated to male chromatin remodeling. From these results, it also emerges that the phosphorylation of SpH2B and SpH1 is not required for the degradation of the SpH that is concurrent to male chromatin remodeling.  相似文献   

12.
The sea urchin sperm-specific histones H1 and H2B are multiply phosphorylated in spermatids, dephosphorylated in the final stages of spermatogenesis to give mature sperm, and rephosphorylated upon fertilization. Phosphorylation in spermatids, and probably at fertilization, occurs at repeated -Ser-Pro-X-Basic-motifs in the distinctive N-terminal basic domains of both histones and at the end of the much longer C-terminal domain of H1. Here we identify the consequences of multiple phosphorylation through comparison of some physical and biochemical properties of spermatid (phosphorylated) and sperm (dephosphorylated) chromatin and histones. Study of the DNA binding properties of the intact histones and isolated basic domains suggests that phosphorylation at three dispersed sites in the C-terminal tail of H1 has little effect on its overall DNA binding affinity, whereas, strikingly, binding of the N-terminal domains of H2B and H1 is abolished by phosphorylation at four or six tandemly repeated sites respectively. Together with the relative timing of events in vivo, this suggests that phosphorylation/dephosphorylation of the N-terminal (and distal end of the C-terminal) tail of H1, and/or the N-terminal tail of H2B, effectively controls intermolecular interactions between adjacent chromatin filaments, and hence chromatin packing in the sperm nucleus.  相似文献   

13.
To obtain information on the remodeling of sperm chromatin during male pronuclei formation, we have followed the sperm specific histones (SpH) that form the nucleosomal core by Western immunoblot analysis with polyclonal antibodies directed against the core SpH. The results obtained indicate that the complete set of SpH is absent from zygote chromatin at the beginning of the first S phase. The disappearance of SpH is not coincidental for the five histone classes: SpH4 and SpH3 are lost 5-15 min post insemination (p.i.), SpH2B and SpH2A disappear 20-40 min p.i., and SpH1 is progressively diminished up to 30 min p.i. This order of sperm chromatin remodeling is not affected by the inhibition of protein synthesis by emetine, indicating that the factor(s) responsible for SpH disappearance are present in unfertilized eggs. The lost SpH's are not replaced by newly synthesized CS variants, since the basic proteins synthesized de novo during male pronuclei formation are not incorporated into chromatin remaining in the cytoplasm. These newly synthesized proteins are different from the CS variants as judged by their electrophoretic migration.  相似文献   

14.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Within the first cell cycle following fertilization the average nucleosomal repeat length of sea urchin male pronuclear chromatin declines by 30-40 base pairs to a value typical of that found in the embryo. This decline occurs after a lag of about 30 min postfertilization, and is accompanied by replication of the male chromatin and accumulation of cleavage-stage (CS) core histone variants. When replication is inhibited by greater than 95% with aphidicolin, the decline in repeat length still occurs, although it is slightly retarded. The decline in repeat length also occurs when protein synthesis is blocked by greater than 98% and DNA synthesis by 60-70% with emetine. The adjustment of nucleosome repeat length therefore can occur in vivo without extensive movement of replication forks across the length of the chromatin, or normal progression of the cell cycle, and appears to require no proteins synthesized postfertilization. Blocking of DNA synthesis or protein synthesis also does not prevent the normal histone variant transitions involved in male pronuclear chromatin remodeling. Although their accumulation is slowed, CS core variants eventually become the predominant male pronuclear histones in their classes when replication is inhibited. Since a shortening of the average nucleosomal repeat length of approximately 10-20% is not sufficient to account for this large acquisition of CS variants, some of the sperm (Sp) core histones are probably displaced from the replication-blocked pronucleus. Therefore, accumulation of CS H2A and CS H2B are temporally correlated with the repeat length transition, whereas replication, normal progression of the cell cycle, and the early histone transitions involving SpH1 and SpH2B are not.  相似文献   

16.
17.
The "primitive" sea urchin Eucidaris tribuloides resembles the advanced sea urchins (euechinoids) in many respects, yet some features of its biochemistry and morphogenesis are more similar to other echinoderms such as starfish or sea cucumbers. Two unique characteristics of the sperm chromatin of all known euechinoids are an extremely long average nucleosomal repeat length and the presence of two male germ-line-specific histone variants, Sp H1 and Sp H2B. Histone composition and nucleosomal repeat length of the sperm chromatin of Eucidaris were compared to those of several euechinoids and a starfish. Eucidaris sperm chromatin contained large H1 and H2B histone variants typical of euechinoids. The H1 was about nine amino acids smaller than Sp H1 of the advanced urchin Strongylocentrotus purpuratus. Its Sp H2B molecules were the same size as in the euechinoids. Peptide maps showed that N-terminal regions of Sp H1 and Sp H2B contained repeating basic amino acid motifs characteristic of euechinoids. The smaller size of Eucidaris H1 is accounted for by a smaller C-terminal region. The repeat length of Eucidaris sperm chromatin was slightly shorter than that of two euechinoids, but significantly larger than starfish, which lacks a large H2B. The Sp H2B gene of Eucidaris was expressed during spermatogenesis in the same cell types as for S. purpuratus. Thus Sp histone subtype expression and chromatin structure in this distantly related echinoid closely resemble the euechinoids. The presence of an Sp H2B and a very long repeat length appear to be characteristic of the echinoids only.  相似文献   

18.
The purification and the physico-chemical characterization of one of the two H2B histone variants from the sperm of the sea urchin Sphaerechinus granularis are reported. The molecule shows, in addition to a distinctive molecular weight value, an amino acid composition different both from that of calf thymus H2B histone and from those of H2B histones from chromatin of sperm and embryos of other sea urchins. Circular dichroism and fluorescence data are discussed in comparison to those of calf thymus H2B.  相似文献   

19.
The structural organization of mature sperm chromatin from three representatives of theMytilidae family has been studied. The acid-soluble proteins in these species nuclei are primarily sperm-specific (approximately 80%) with the remainder being core histones. Previously, we have shown that the mature sperm nuclei of these molluscs are compact, dense structures formed by interaction of the spermspecific proteins with DNA (1). Here we show that: a) although the histones are minor chromatin protein fraction, they still organize a part (20–25%) of the total DNA into nucleosomes; b) one of the sperm-specific proteins, different from somatic H1 or H5 histones participates in the formation of the beaded structures.  相似文献   

20.
Histones, linker histones of the H1 family, their postsyntetic modifications, DNA-histone H1 interaction are reviewed. A question of protein change in spermatogenesis at the formation of inactive nucleus with high degree of DNA density is considered. Special attention was paid to sperm-specific histones of the H1 family of sperm cells. Their role in organization of high-order chromatin structure of sperm cells is discussed. Also, results of different studies on the structural organization of chromatin (nucleosomes, 30-nm fibers, chromatin loops and metaphase chromosomes) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号