首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was found that mitochondrial oligomycin-sensitive ATPase (OS-ATPase) possesses the esterase activity with respect to some carboxylic acid esters with phenols and arylalcane alcohols. The substrate specificity of the esterase found was studied. The effects of some inhibitors and activators of ATPase on the enzyme activity were demonstrated. It was found that ADP inhibits the enzyme from submitochondrial particles containing factor F1 and does not inhibit the enzyme from the particles devoid of this factor. The data obtained suggest that esterase is localized in the hydrophobic part of the oligomycin-sensitive ATPase complex and are indicative of the functional interrelationship between the esterase and ATPase activities.  相似文献   

2.
3.
The amounts of an antigen to primary biliary cirrhosis (PBC) which occur in subcellular fractions of Trypanosoma rhodesiense and T. lewisi correlate positively with the oligomycin-sensitive (OS) ATPase activity of these fractions. This result is consistent with the mitochondrial ATPase association of the antigen in mammalian and other cells. Higher levels of OS-ATPase and of PBC antigen in T. lewisi accord with a more extensive mitochondrial development in this species.  相似文献   

4.
The oligomycin-sensitive ATPase protein has been purified in a properly dispersed form from yeast mitochondrial membranes and has been further characterized, particularly with respect to parameters which affect ATPase activity. The protein is to some degree cold labile, the rate of inactivation being accelerated by chaotropic anions. Essentially complete protection against cold inactivation is afforded by methanol, ethanol, and ADP. A partly latent component of the ATPase activity has been discovered which is activated either by heating in the presence of ATP, or to some extent by trypsin. The heat-activated protein is oligomycin-insensitive and much more susceptible to inactivation by cold. N-ethylmaleimide, and trypsin. It is suggested that like the ATPase from spinach chloroplasts and bovine mitochondria, the yeast protein may contain an ATPase inhibitor polypeptide which is dislodged either by heating or by proteolytic enzymes.  相似文献   

5.
A purified preparation of the oligomycin-sensitive ATPase from yeast mitochondria has been shown to elicit ATP-32Pi exchange when combined with phospholipids. The reconstitution was normally carried out by dialysis of an ATPase-phospholipid-bile detergent mixture, but could also be achieved by direct addition of the lipid. Vesicle structures with diameters between 200 and 1500 Å were seen by electron microscopy.The ATP-32Pi exchange was independent of electron transport but sensitive to uncouplers and energy-transfer inhibitors. As in mitochondria, ATPase activity in the reconstituted system was stimulated by a range of uncouplers which inhibited ATP-32Pi exchange. Taken together, the results raise the possibility that the terminal coupling mechanism might still be intact within the ATPase complex.  相似文献   

6.
7.
Although ATP-MgCl2 enhances the recovery of renal function after ischemia and reperfusion, it is not known whether this agent has any beneficial effects on renal microcirculation and function in a nonheparinized model of trauma and severe hemorrhage. To study this, a midline laparotomy was performed (i.e., trauma induced) and the rats were bled to and maintained at a mean arterial pressure of 40 mmHg (1 mmHg = 133.32 Pa) until 40% of the maximum shed blood volume was returned in the form of Ringer's lactate (RL) solution. Animals were then resuscitated with 4 times the volume of the shed blood in the form of RL. ATP-MgCl2, 50 mumol/kg body weight, or an equivalent volume of saline, was infused intravenously during and following resuscitation. Renal microcirculation was examined by using colloidal carbon infusion and laser Doppler flow-metry. Glomerular filtration rate (GFR) was assessed with [3H]inulin clearance and cardiac output (CO) was determined by dye dilution technique. The results indicate that the depressed renal microcirculation following hemorrhage and resuscitation was restored by ATP-MgCl2 treatment. GFR was significantly higher in ATP-MgCl2-treated than saline-treated rats. ATP-MgCl2 also increased urine output, restored the decreased CO, and prevented the occurrence of renal edema after hemorrhage and resuscitation. Thus, ATP-MgCl2 appears to be a useful adjunct to crystalloid resuscitation following trauma and severe hemorrhagic shock even in the absence of blood resuscitation.  相似文献   

8.
Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-gamma (PPARgamma)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30-60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 microM RSG increased (P < 0.05) AMPKalpha1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased (P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 microl/100 g body mass), or 3 mg/kg RSG. AMPKalpha1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKalpha2 activity was approximately 25% lower in obese vs. lean animals (P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity (P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.  相似文献   

9.
Candida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition. Mutants that fail to synthesize or respond to farnesol could be locked in the filamentous mode. To test this hypothesis, a collection of C. albicans mutants were isolated that have altered colony morphologies indicative of the presence of hyphal cells under environmental conditions where C. albicans normally grows only as yeasts. All mutants were characterized for their ability to respond to farnesol. Of these, 95.9% fully or partially reverted to wild-type morphology on yeast malt (YM) agar plates supplemented with farnesol. All mutants that respond to farnesol regained their hyphal morphology when restreaked on YM plates without farnesol. The observation that farnesol remedial mutants are so common (95.9%) relative to mutants that fail to respond to farnesol (4.1%) suggests that farnesol activates and (or) induces a pathway that can override many of the morphogenesis defects in these mutants. Additionally, 9 mutants chosen at random were screened for farnesol production. Two mutants failed to produce detectable levels of farnesol.  相似文献   

10.
G Zimmer  L Mainka  B M Heil 《FEBS letters》1982,150(1):207-210
Using a bromobimane fluorescent label the Mr 31 000 protein band oligomycin-sensitive (OS)-ATPase from beef heart mitochondria is shown to become much intensified by 2-mercaptopropionylglycine. In the presence of 3.5 nmol/mg protein of the thiol reagent ATP-Pi exchange activity is increased by 90%. With the fluorescent crosslinking reagent dibromobimane (DB) we show that a new fluorescent peak appears between Mr 50 000 and 60 000. ATP-Pi exchange is very much decreased by DB. The results suggest that for regulation of ATP-synthetase activity sulfhydryl groups in the region of the Mr 31 000 protein(s) play an important role.  相似文献   

11.
The influence of osmotic pressure of the incubating medium (25-500 mM sucrose) on oligomycin--sensitive, 2,4-dinitrophenyl-stimulated ATP-ase-activity, Mg2+ release and swelling of the liver mitochondria in 1-, 3-, 12-, 24-months Wistar rats is, investigated to determine age changes of structurally functional state of mitochondria. An increase in the sucrose concentration in the medium from 150 to 500 mM causes almost equal and practically absolute inhibition of ATP-ase-activity in different-age groups of rats, regardless of the presence or absence of Mg2+ ions in the medium A fall of the sucrose concentration to 150-25 mM induces a decrease in mitochondria ATP-ase-activity in Mg2+ free medium in 12- and 24-months rats (to 30 and 22%, respectively). No changes are observed in 1- and 3-months animals. Differences in rates of exogenous NADH oxidation by mitochondria of 1- and 12-months rats as a reflection of inner membrane damage degree are not observed under these conditions. Relative changes in ATP-ase-activity in a Mg2+ free medium with sucrose concentration of 25 mM (compared with 150 mM) correlate (r = 0.82) with those of optical density of mitochondria, measured at light wave length of 520 nm. It is obvious that the liver mitochondria of young and old rats sufficiently differ in spontaneous swelling rate in the media with different osmotic pressure: mitochondria of 1-month rats swell much faster than those of old rats. Considerable age differences of osmotic dependence of Mg2+ output from mitochondria are observed. They depend also on peculiarities of spontaneous organelle swelling dynamics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
We determined that the ATPase activity contained in preparations of neuronal microtubules is associated with a 50,000-dalton polypeptide by four different methods: (a) photoaffinity labeling of the pelletable ATPase fraction with [gamma-32P]-8-azido-ATP; (b) analysis of two- dimensional gels (native gel X SDS slab gel) of an ATPase fraction solubilized by treatment with dichloromethane; (c) ATPase purification by glycerol gradient sedimentation and gel filtration chromatography of a solvent-released ATPase fraction, (d) demonstration of the binding of affinity-purified antibody to the 50-kdalton polypeptide to ATPase activity in vitro. Beginning with preparations of microtubules we have purified the ATPase activity greater than 700-fold and estimate that the purified enzyme has a specific activity of 20 mumol Pi x mg-1 x min- 1 and comprises 80-90% of the total ATPase activity associated with neuronal microtubules. With affinity-purified antibody we also demonstrate cross-reactivity to the 50-kdalton subunits of mitochondrial F-1 ATPase and show that the antibody specifically labels mitochondria in PtK-2 cells. Biochemical comparisons of the enzymes reveal similar but not identical subunit composition and sensitivity to mitochondrial ATPase inhibitors. These studies indicate that the principal ATPase activity associated with microtubules is not contained in high molecular weight proteins such as dynein or MAPs and support the hypothesis that the 50-kdalton ATPase is a membrane protein and may be derived from mitochondria or membrane vesicles with F-1-like ATPase activity.  相似文献   

15.
In order to examine the role of phospholipids in the activation of membrane bound Ca2+/Mg2+ ATPase, the activities of Ca2+ ATPase and Mg2+ ATPase were studied in heart sarcolemma after treatments with phospholipases A, C and D. The Mg2+ ATPase activity was decreased upon treating the sarcolemmal membranes with phospholipases, A, C and D; phospholipase A produced the most dramatic effect. The reduction in Mg2, ATPase activity by each phospholipase treatment was associated with a decrease in the Vmax value without any changes in the Ka value. The depression of Mg2+ ATPase in the phospholipase treated preparations was not found to be due to release of fatty acids in the medium and was not restored upon reconstitution of these membranes by the addition of synthetic phospholipids such as lecithin, lysolecithin or phosphatidic acid. In contrast to the Mg2+ ATPase, the sarcolemmal Ca2+ ATPase was affected only slightly by phospholipase treatments. The greater sensitivity of Mg- ATPase to phospholipase treatments was also apparent when deoxycholate-treated preparations were employed. These results indicate that glycerophospholipids are required for the sarcolemmal Mg2+ ATPase activity to a greater extent in comparison to that for the Ca2+ ATPase activity and the phospholipids associated with Mg2+ ATPase are predominantly exposed at the outer surface of the membrane.  相似文献   

16.
17.
This study demonstrates that Ca2+ regulates thrombosthenin ATPase activity, likening the control of platelet contraction to that of cardiac and skeletal muscle. Thrombosthenin, the platelet contractile protein, was isolated by repeated low ionic strength and isoelectric precipitation. Thrombosthenin superprecipitation and ATPase activity were measured in 10−4 M CaCl2 (high ionized Ca2+) and 0.25 mM ethylene glycol bis-(β-aminoethyl ether)-N,N′-tetraacetic acid (EGTA) (low ionized Ca2+). In both high and low Ca2+, superprecipitation, measured as an increase in turbidity, ocurred shortly after addition of ATP. ATP hydrolysis by thrombosthenin, which proceeded linearly for several hours, was greater in high Ca2+ (approx. 2.3 nmoles·mg−1·min−1) than in low Ca2+ (approx. 1.8 nmoles·mg−1·min−1). This difference, when analyzed by the Student's t-test for paired samples was highly significant (P < 0.001). Thrombosthenin ATPase activity was not significantly altered by azide, an inhibitor of mitochondrial ATPase, nor by ouabain, an inhibitor of (Na+ + K+)-activated ATPase. The dependence of thrombosthenin activation on ionized Ca2+, measured with the use of CaEGTA buffers, was studied. The Ca2+-dependent portion of thrombosthenin ATPase was half maximal at 4.5·10−7 M Ca2+. This corresponds to an apparent binding constant of 2.2·106 M−1, a value that is comparable to that of skeletal and cardiac muscle. These data suggest that a Ca2+ control mechanism similar to that of the troponin-tropomyosin complex of muscle exists in the platelet.  相似文献   

18.
19.
A persistent ATPase/GTPase activity has been found to be associated with highly recycled bovine brain microtubules. A GTP regeneration system was introduced to minimize the inhibitory effects of this hydrolase on microtubule polymerization. The characteristics of the ATPase indicate that it is not involved in GTP-induced mictrotubule polymerization, but is directly involved in ATP-induced polymerization. ATP-induced polymerization was also shown to require stoichiometric amounts of GDP, but higher levels of GDP inhibited both microtubule formation and the ATPase activity. An ammonium sulfate fractionation procedure was devised to separate microtubule protein into an ATPase-rich fraction and a pure tubulin fraction. The pure tubulin fraction polymerized in the presence of GTP, but not in the presence of ATP and GDP. In contrast, the ATPase-rich fraction polymerized with either ATP or GTP. It is still not known whether the microtubule associated ATPase plays a significant role in cellular microtubule function.  相似文献   

20.
Kinetic evidence are presented for the existence of a high affinity inhibitory site for ADP /Ki < 10?7 M/ in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. The ATPase·ADP complex is completely inactive in the ATPase reaction; it can be converted into active ATPase in a slow ATP-dependent reaction. The dependence of a first order rate constant for activation of the enzyme·ADP complex on concentration of ATP gives a Km value equal to that for ATP in the ATPase reaction. The data obtained suggest that the membrane-bound ATPase complex contains two kinetically distinct nucleotide-binding centers, i.e. center 1 binds ATP or ADP with a formation of enzyme-substrate or enzyme-competitive inhibitor complexes: center 2 binds ADP with a formation of a complex which is able to bind ATP in center 1 and unable to hydrolyze the bound ATP. The binding of ATP or ADP in center 1 changes the reactivity of center 2 towards ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号