首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA clone encoding the soluble guanylyl cyclase alpha2 subunit was isolated from medaka fish (Oryzias latipes) and designated as OlGCS-alpha2. The OlGCS-alpha2 cDNA was 3,192 bp in length and the open reading frame (ORF) encodes a protein of 805 amino acids. The deduced amino acid sequence has high similarity to that of the mammalian alpha2 subunit gene except for the N-terminal regulatory domain. The C-terminal 5 amino acids, "RETSL", which have been reported to interact with the post synaptic density protein (PSD)-95 were conserved. An RNase protection assay with adult fish organs showed that OlGCS-alpha2 was expressed mainly in the brain and testis. The complete nucleotide sequence (about 41 kbp) of the OlGCS-alpha2 genomic DNA clone isolated from a medaka fish BAC library indicated that the OlGCS-alpha2 gene consisted of 9 exons and 8 introns. The 5'-flanking region and larger introns, such as introns 1, 4, and 7, contained the several fragments conserved in the nucleotide sequences of Rex6 (non-long terminal repeat retrotransposon), MHC class I genomic region, and OlGC1, the medaka fish homolog of the mammalian guanylyl cyclase B gene. Linkage analysis on the medaka fish chromosome demonstrated that the OlGCS-alpha2 gene was mapped to LG13; this mapping position was different from those for the OlGCS-alpha1 and OlGCS-beta1 genes (LG1).  相似文献   

2.
The primary structure of the larger subunit of the soluble guanylyl cyclase from bovine lung, which catalyzes the formation of cyclic GMP from GTP, has been determined. Two clones, isolated from two bovine libraries yielded a total of 3261 bp with a coding region of 2073 bp. The open reading frame encodes a protein of 691 amino acids and a molecular mass of 77,500. The deduced amino acid sequence reveals regions which are, to a large extent, homologous to the sequence of the smaller subunit of the enzyme as well as to the sequences of other gyanylyl and adenylyl to a large extent, homologous to the sequence of the smaller subunit of the enzyme as well as to the sequences of other gyanylyl and adenylyl cyclases.  相似文献   

3.
4.
A new form of guanylyl cyclase is preferentially expressed in rat kidney   总被引:13,自引:0,他引:13  
P S Yuen  L R Potter  D L Garbers 《Biochemistry》1990,29(49):10872-10878
On the basis of the conserved amino acid sequences of the catalytic domain of both soluble and plasma membrane forms of guanylyl cyclase, we have used the polymerase chain reaction to identify a new form of guanylyl cyclase that is expressed principally in kidney. The cDNA for this new form (GC-S beta 2) codes for a 76.3-kDa protein, which most closely resembles a 70-kDa subunit (GC-S beta 1) of the lung soluble guanylyl cyclase. The mRNA for GC-S beta 1 is preferentially expressed in lung and brain, whereas GC-S beta 2 mRNA is more abundant in kidney and liver. An 86 amino acid carboxyl-terminal region extends beyond the C-terminus of GC-S beta 1 and contains a consensus sequence (-C-V-V-L) for isoprenylation/carboxymethylation. This is the first demonstration of heterogeneity among the heterodimeric forms of guanylyl cyclase and suggests differential regulation.  相似文献   

5.
Purified soluble guanylyl cyclase consists of two subunits (70 and 73 kDa) whose primary structures were recently determined. The availability of cDNA clones coding for either subunit allowed to study the question of the functional roles of the two subunits in expression experiments. Enzyme subunits were expressed in COS-7 cells by transfection with expression vectors containing the coding region for the 70 of 73 kDa subunit of the enzyme. No significant elevation in the activity of soluble guanylyl cyclase was observed in cells transfected with cDNA coding for one of the subunits. In contrast, transfection of cells with cDNAs coding for both subunits resulted in a marked increase in activity of soluble guanylyl cyclase. Enzyme activity was stimulated about 50-fold by sodium nitroprusside. The results indicate that formation of cyclic GMP by soluble guanylyl cyclase requires both 70 and 73 kDa subunits.  相似文献   

6.
Two forms of the smaller subunit of the human soluble guanylate cyclase enzyme have been cloned by using PCR. One of the clones (HSGC-1) is identical to bovine and rat lung smaller subunit cyclase. However, the other (HSGC-2) is lacking 33 amino acids. Comparison of its sequence with published partial genomic sequences of bovine guanylate cyclase indicates that HSGC-2 is formed due to alternative splicing.  相似文献   

7.
Soluble guanylyl cyclase is an important target for endogenous nitric oxide and the guanylyl cyclase modulator, YC-1. Recently BAY 41-2272 was identified as a similar but more potent and more specific substance. While YC-1 also acts as non-specific phosphodiesterase inhibitor, BAY 41-2272 is devoid of an effect on phosphodiesterases. BAY 41-2272 has so far only been tested on the alpha(1)/beta(1) heterodimeric isoform of soluble guanylyl cyclase and its binding site has been mapped to a region in the alpha(1) subunit amino-terminal sequence. Although this region is poorly conserved in the alpha(2) subunit, we show in the current study that the alpha(2)/beta(1) heterodimeric enzyme isoform is activated by BAY 41-2272. Deletion analysis of the alpha(2) subunit and co-expression with the beta(1) subunit in the baculovirus/Sf9 system is consistent with the amino-terminal amino acids 104 to 401 of the alpha(2) subunit as binding site for BAY 41-2272.  相似文献   

8.
A cDNA clone for the membrane form of guanylate cyclase has been isolated from the testis of the sea urchin Strongylocentrotus purpuratus. An open reading frame predicts a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids divided the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl domain of 594 intracellular amino acids. Three potential Asn-linked glycosylation sites were present in the proposed extracellular domain. The deduced protein sequence was homologous to the protein kinase family and contained limited but significant regions of identity with a low molecular weight atrial natriuretic peptide receptor. The carboxyl region (202 amino acids) was 42% identical with a subunit of the cytoplasmic form of guanylate cyclase recently cloned from bovine lung (Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.-D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988) FEBS Lett. 239, 29-34). Therefore, the membrane form of guanylate cyclase is a member of an apparently large family of proteins that includes the low molecular weight atrial natriuretic peptide receptor, the soluble form of guanylate cyclase and protein kinases.  相似文献   

9.
Two DNA molecules complementary to human liver mRNA coding for the alpha-subunit of the stimulatory regulatory component Gs of adenylyl cyclase were cloned. One of the two forms is a full-length cDNA of 1614 nucleotides plus a poly(A) tail of 59 nucleotides. The deduced sequence of 394 amino acids encoded by its open reading frame is essentially identical to that of the alpha-subunits of Gs identified by molecular cloning from bovine adrenals, bovine brain and rat brain. Two independent clones of the other type of cDNA were isolated. Both were incomplete, beginning within the open reading frame coding for the alpha s polypeptide. One codes for amino acids 5 through 394 and the other for amino acids 48 through 394 of the above described cDNA of 1614 nucleotides, and both have the identical 3'-untranslated sequence. They differ from the first cDNA, however, in that they lack a stretch of 42 nucleotides (numbers 214 through 255) and have nucleotides 213 (G) and 256 (G) replaced with C and A, respectively. This results in a predicted amino acid composition of another alpha-subunit of Gs that is shorter by 14 amino acids and contains two substitutions (Asp for Glu and Ser for Gly) at the interface between the deletion and the unchanged sequence. We call the smaller subunit alpha s1 and the larger alpha s2. This is the first demonstration of a structural heterogeneity in alpha s subunits that is due to a difference in amino acid sequence.  相似文献   

10.
Regional and age specific differences are observed in the sodium nitroprusside induced relaxation responses in the urinary tract. To clarify these differences, guanylyl cyclase activity is assayed in particulate and soluble fractions from the ureter, bladder dome, and urethra of young (11-18 days), adult (90-100 days), and old adult (2-3 years) guinea pigs. The rank order of soluble guanylyl cyclase activities is urethra = ureter > bladder dome with the largest decreases with aging occurring in the bladder. Atrial natriuretic factor (10-7 M) increases particulate guanylyl cyclase activity in the three tissues at all ages tested, with the activity being highest in the ureter. ATP (0.5 mM) activates particulate guanylyl cyclase in the ureter, bladder and urethra of old adult guinea pigs, and enhances atrial natriuretic factor induced activation of particulate guanylyl cyclase in all tissues and at all ages tested. The higher levels of soluble guanylyl cyclase activity in the urethra and ureter compared to the bladder parallel sodium nitroprusside induced relaxation in these tissues.  相似文献   

11.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   

12.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

13.
Soluble guanylyl cyclase is a heterodimeric enzyme consisting of an alpha(1) and a beta(1) subunit and is an important target for endogenous nitric oxide and the guanylyl cyclase modulator YC-1. The activation of the enzyme by both substances is dependent on the presence of a prosthetic heme group. It has been unclear whether this prosthetic heme group is sandwiched between the alpha(1) and beta(1) subunits or whether it exclusively binds to the beta(1) subunit. Here we analyze progressive amino-terminal deletion mutants of the human alpha(1) subunit after co-expression with the human beta(1) subunit in the baculovirus/Sf9 system. Spectral, biochemical, and pharmacological analysis shows that the first 259 amino acids of the alpha(1) subunit can be deleted without loss of sensitivity to nitric oxide (NO) or YC-1 or loss of heme binding of the respective enzyme complex with the beta(1) subunit. This is in contrast to previous data indicating that NO sensitivity and a functional heme binding site requires full-length amino termini of bovine alpha(1) and beta(1) subunits. Further deletion of the first 364 amino acids of the alpha(1) subunit leads to an enzyme complex with preserved heme binding but loss of sensitivity to NO or YC-1 despite induction of the typical spectral shift by NO binding to the prosthetic heme group. We conclude that 1) the amino-terminal part of the alpha(1) subunit is not involved in heme binding and 2) amino acids 259-364 of the alpha(1) subunit represent an important functional domain for the transduction of the NO activation signal and likely represent the target for NO-sensitizing substances like YC-1.  相似文献   

14.
Conventional soluble guanylyl cyclases are heterodimeric enzymes that synthesize cGMP and are activated by nitric oxide. Recently, a separate class of soluble guanylyl cyclases has been identified that are only slightly activated by or are insensitive to nitric oxide. These atypical guanylyl cyclases include the vertebrate beta2 subunit and examples from the invertebrates Manduca sexta, Caenorhabditis elegans, and Drosophila melanogaster. A member of this family, GCY-35 in C. elegans, was recently shown to be required for a behavioral response to low oxygen levels and may be directly regulated by oxygen (Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A., and Bargmann, C. I. (2004) Nature 430, 317-322). Drosophila contains three genes that code for atypical soluble guanylyl cyclases: Gyc-88E, Gyc-89Da, and Gyc-89Db. COS-7 cells co-transfected with Gyc-88E and Gyc-89Da or Gyc-89Db accumulate low levels of cGMP under normal atmospheric oxygen concentrations and are potently activated under anoxic conditions. The increase in activity is graded over oxygen concentrations of 0-21%, can be detected within 1 min of exposure to anoxic conditions and is blocked by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Gyc-88E and Gyc-89Db are co-expressed in a subset of sensory neurons where they would be ideally situated to act as oxygen sensors. This is the first demonstration of a soluble guanylyl cyclase that is activated in response to changing oxygen concentrations.  相似文献   

15.
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor.  相似文献   

16.
Abstract: We have isolated and characterized a new guanylyl cyclase gene ( dgcl) in Drosophila. The deduced amino acid sequence (683 amino acids) most closely resembled the mammalian solubletype guanylyl cyclase α subunit. The cyclase catalytic domain was highly conserved between the mammalian and Drosophila guanylyl cyclases. The dgcl mRNA was detected in wild-type heads but not in bodies, and its level was reduced in the mutant eyes absent (eya) , indicating that dgcl is preferentially expressed in the CNS and in the eye. The enriched distribution in the eye suggests that dgcl may have a role in phototransduction.  相似文献   

17.
We have previously demonstrated that the 73-kDa (A) subunit of the bovine coated vesicle (H+)-ATPase possesses a nucleotide binding site required for catalytic activity (Arai, H., Berne, M., Terres, G., Terres, H., Puopolo, K., and Forgac, M. (1987) Biochemistry 26, 6632-6638). Here we report the cDNA sequence of the coding region of the bovine brain A subunit. Comparison of the deduced amino acid sequence with those previously reported for the A subunits of vacuolar ATPases from lower eukaryotes, plants, and archaebacteria reveals significant homology, especially in sequences implicated in nucleotide binding. The message encoding the bovine brain A subunit is relatively large, approximately 4.6 kilobases; Northern blotting of RNA isolated from rat brain and human brain tumor cells reveals a message of similar size. Northern analysis of several bovine tissues indicates that only one message for this subunit is expressed. Southern blot analysis of bovine genomic DNA indicates that the bovine A subunit is encoded by a single gene.  相似文献   

18.
Structure and expression of a cloned cDNA for mouse interferon-beta   总被引:20,自引:0,他引:20  
A unique sequence in the mouse genome which cross-hybridized to a cloned human interferon-beta 1 gene was detected by DNA blot analysis. Taking advantage of this, a cDNA library prepared from partially purified mRNA for mouse interferon-beta was screened using human interferon-beta 1 DNA as a probe. One of the positive clones, pM beta-3, contained a 680-base pair cDNA insert, whose base sequence contained a single large open reading frame for 182 amino acids. The coding sequences of the cDNA showed homologies of 63% at the nucleotide and 48% at the amino acid level with respect to human interferon-beta 1 cDNA (Taniguchi, T., Ohno, S., Fujii-Kuriyama, Y., and Muramatsu, M. (1980) Gene 10, 11-15). The first 21 amino acids, considered to be the signal peptide, were followed by 24 amino acids, whose sequence was identical with the NH2-terminal sequence that had been reported for mouse interferon-beta from Ehrlich ascites tumor cells (Taira, H., Broeze, R. J., Jayaram, B. M., Lengyel, P., Hunkapiller, M. W., and Hood, L. E. (1980) Science (Wash. D.C.) 207, 528-530). The complete primary sequence of mature interferon-beta polypeptide consisting of 161 amino acids (Mr = 19,700) was deduced. There are three N-glycosylation sites, and this offers an explanation for the larger molecular size (Mr = 26,000-40,000) of natural mouse interferon-beta in comparison to the deduced interferon polypeptide. The cDNA, when fused to a SV40 promoter sequence and then introduced into COS-7 cells, directed the synthesis and secretion of a protein product indistinguishable from the authentic mouse interferon-beta.  相似文献   

19.
Human gamma-glutamyl transpeptidase (GGT)1 is composed of two subunits derived from a single precursor (Nash, B., and Tate, S.S. (1984) J. Biol. Chem. 259, 678-685; Finidori, J., Laperche, Y., Tsapis, R., Barouki, R., Guella?n, G., and Hanoune, J. (1984) J. Biol. Chem. 259, 4687-4690) consisting of 569 amino acids (Laperche, Y., Bulle, F., Aissani, T., Chobert, M.N., Aggerbeck, M., Hanoune, J., and Guella?n, G. (1986) Proc Natl. Acad. Sci. U.S.A. 83, 937-941). In the present study we report the cloning of an altered form of this precursor from human liver. We have isolated two clones, one 2,632 base pairs (bp) long from a fetal liver cDNA library and one 926 bp long from an adult liver cDNA library, each containing a 22-bp insertion that introduces a premature stop codon and shortens the open reading frame to 1,098 bp when compared with known human cDNA sequences specific for GGT. Sequence analysis of a human genomic GGT clone shows that this insertion of 22 bp is generated by a splicing event involving an alternative 3'-acceptor site. By polymerase chain reaction experiments we demonstrate that the alternatively spliced mRNA is present in polysomes from the microsomal fraction of a human hepatoma cell line (Hep G2) and thus could encode an altered GGT molecule of 39,300 Da (366 amino acids) encompassing most of the heavy subunit which is normally 41,500 Da (380 amino acids). The altered mRNA is detected in various human tissues including liver, kidney, brain, intestine, stomach, placenta, and mammary gland. This report is the first demonstration of an alternative primary sequence in the mRNA coding for GGT, a finding that could be related to the presence of some inactive forms of GGT detected in human tissues.  相似文献   

20.
Guanylin (PNTCEICAYAACTGC) is a peptide recently isolated from the intestine, the actions of which appear to be mimicked by bacterial heat-stable enterotoxins (Currie, M. G., Fok, K. F., Kato, J., Moore, R. J., Hamra, F. K., Duffin, K. L., and Smith, C. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 947-951). A cDNA clone encoding the peptide was isolated from a rat intestinal cDNA library using a degenerate oligonucleotide probe. The mRNA (approximately 0.8-0.9 kilobase) encoding the peptide contained an open reading frame of 115 amino acids, including an amino-terminal signal peptide. The carboxyl-terminal region of the predicted polypeptide contained a sequence identical to guanylin, but the 15-amino acid peptide likely represents an artifact of previous acetic acid extraction methods, since an aspartate residue precedes the amino-terminal proline. A lysine-lysine dipeptide bond is one likely processing site of pro-guanylin and would generate a 60-amino acid mature peptide. Other potential cleavage sites exist at single lysine and arginine residues, which could result in peptides ranging from 22 to 56 amino acids. Transfection of COS-7 cells with the guanylin cDNA resulted in the expression of a secreted protein of M(r) 10,000. The expressed proguanylin failed to elevate cyclic GMP concentrations in human colonic T84 cells, but acetic acid treatment of pro-guanylin activated it and resulted in large elevations of cyclic GMP. Guanylin mRNA was prevalent in rat intestine but was also found in low abundance in adrenal gland, kidney, and uterus/oviduct. Guanylyl cyclase C, the apparent guanylin receptor, was found in abundant amounts in the intestine by Northern analysis, and by the polymerase chain reaction or cDNA cloning it was also found in adrenal gland, airway epithelial cells, brain, and olfactory and tracheal mucosa. Therefore, the ligand and apparent receptor (guanylyl cyclase C) both originate from mammalian genes, and are expressed in various mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号