首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

2.
J. T. Mahan  M. L. Beck 《Genetica》1986,68(2):113-118
The amount of heterochromatin in the genome of ten members of thevirilis species group was determined as the length of C-band chromosome material relative to the total karyotype length. Thevirilis phylad (Drosophila virilis, D. novamexicana, D. americana americana, andD. americana texana) has significantly greater amounts of heterochromatin in the genome than do members of the montana phylad (D. montana, D. lacicola, D. flavomontana, D. borealis, D. ezoana, D. littoralis). Thus, the significant karyotypic change accompanying diversification of these species has involved reduction in their total constitutive heterochromatin. These changes have apparently involved reductions in the amount of centromeric heterochromatin in the autosomes.  相似文献   

3.
Repetitious DNA in some Anemone Species   总被引:2,自引:0,他引:2  
The DNA from several Anemone species, which contain different amounts of heterochromatin as revealed by Giemsa staining, was analysed by ultra-centrifugation and renaturation. No satellite band was observed in any of the samples centrifuged in cesium chloride gradients. Renaturation studies showed the presence of repetitive sequences. The proportion of repetitive DNA per genome varied from 53% to 67% and did not correlate with either the DNA content per cell or the relative amount of heterochromatin.  相似文献   

4.
Nuclear DNA content, chromatin structure, and DNA composition were investigated in four Agave species: two diploid, Agave tequilana Weber and Agave angustifolia Haworth var. marginata Hort., and two pentaploid, Agave fourcroydes Lemaire and Agave sisalana Perrine. It was determined that the genome size of pentaploid species is nearly 2.5 times that of diploid ones. Cytophotometric analyses of chromatin structure were performed following Feulgen or DAPI staining to determine optical density profiles of interphase nuclei. Pentaploid species showed higher frequencies of condensed chromatin (heterochromatin) than diploid species. On the other hand, a lower frequency of A-T rich (DAPI stained) heterochromatin was found in pentaploid species than in diploid ones, indicating that heterochromatin in pentaploid species is made up of sequences with base compositions different from those of diploid species. Since thermal denaturation profiles of extracted DNA showed minor variations in the base composition of the genomes of the four species, it is supposed that, in pentaploid species, the large heterochromatin content is not due to an overrepresentation of G-C repetitive sequences but rather to the condensation of nonrepetitive sequences, such as, for example, redundant gene copies switched off in the polyploid complement. It is suggested that speciation in the genus Agave occurs through point mutations and minor DNA rearrangements, as is also indicated by the relative stability of the karyotype of this genus. Key words : Agave, DNA cytophotometry, DNA melting profiles, chromatin structure, genome size.  相似文献   

5.
The average 2C DNA amount for the peanut (Arachis hypogaea L.) genome is 4.21 pg, and 73% of the dormant peanut cotyledon nuclei displayed 8C DNA amounts or higher, as compared to 0 to 4% in root-shoot apices and leaf tissue. Thermal melt profiles and heterochromatin values indicated replication of the whole genome. Cotyledon nuclear DNA declined in the percent of polyploid nuclei as well as DNA amounts within ploidy classes during germination. The presence of high DNA C levels in cotyledons generated during embryogeny is interpreted to increase the protein-synthesizing capacity and subsequently supplies a ready source of nucleosides and phosphates during early embryo growth as a result of DNA degradation. However, the later DNA decline at the onset of cotyledon senescence was age related similarly to leaf senescence. The change in proportion of heterochromatin was related to the metabolic state of the tissue and not to the DNA content, as dormant and senescing nuclei contained a higher proportion of heterochromatin as compared to nuclei from metabolically active tissue such as germinating roots. The shift in heterochromatin is interpreted to be involved in gene expression.  相似文献   

6.
There is approximately a doubling of the total nuclear DNA between the 8 Lathyrus species and there are significant differences in the amounts of DNA in euchromatin and heterochromatin. Between the 8 species chiasma frequency and total nuclear DNA are not correlated but within complements it is positively correlated with the amount of DNA in the chromosomes. There is no significant correlation between chiasma frequency and euchromatin DNA nor between chiasma frequency and heterochromatin DNA among species, but among chromosomes, as with total DNA, it is positively correlated with euchromatin DNA and heterochromatin DNA. Results show that despite the large differences in DNA amounts between species there are genomic constraints underlying the frequency and distribution of chiasmata in the chromosome complements.  相似文献   

7.
Bogdanov AS  Rozanov IuM 《Genetika》2005,41(10):1369-1376
Earlier, in an integral genetic study, the Asian and European races were distinguished within the species Sylvaemus uralensis (pygmy wood mouse) and the European race was divided into the East European and South European forms. Each of these groups differed from the others, in particular, in the quantity of the centromeric heterochromatin in karyotypes of the animals. To establish the pattern of its changes in S. uralensis, in the present study the DNA content in splenocyte nuclei in all races and forms of pygmy wood mice was assessed using DNA flow cytometry. The heterochromatin amount in karyotypes and genome size were shown to be correlated. The East European chromosomal race of S. uralensis (Central Chernozem and Non-Chernozem regions of Russia, Crimea Peninsula, Middle Volga region, and Southern Ural) and the Asian race of this species (East Kazakhstan, Uzbekistan, and East Turkmenistan), which have respectively the highest and the lowest amounts of centromeric heterochromatin in the karyotype, exhibit the greatest difference in the DNA content in the genome. On average, the difference is approximately 8% in males and 6.7% in females; in both cases, the ranges of variability were distinctly different. Against the general background of the trait variation, the Asian race, whose members have the smallest DNA amount in their cells, looks homogeneous. The genome of the South European chromosomal form of S. uralensis (Caucasus, Transcaucasia, Carpathians, and Balkan Peninsula), which exhibits an intermediate content of the centromeric heterochromatin in the karyotype, is smaller that the genome of the East European race (by 3.2% in the group of males and by 1.9%, in the group of females), but larger than that of the Asian race (by 5% in either sex). Thus, the variability of size of centromeric C-blocks in pygmy wood mouse is likely to be associated with elimination (or, conversely, an increase in the amount) of the genetically inert chromatin. It is suggested that a significant contribution to the variability of genome size in S. uralensis is made by heterochromosomes, or, more precisely, their variable regions, which seem to be largely heterochromatic.  相似文献   

8.
Summary C-band number, guard cell length, and chloroplast number per guard cell were determined for eight maize populations. These populations consisted of maize selected for cold tolerance at the University of Nebraska as well as the original unselected populations. The genome size of these populations had previously been determined. C-band number fluctuated concertedly with the changes in genome size indicating that deletions and additions of constitutive heterochromatin occurred during selection, resulting in altered genome sizes. Guard cell size of all the cold tolerant populations was greater than the cell size of the respective nonselected populations. Chloroplast number per guard cell was also higher in all the cold tolerant populations than in their parental populations, but the increases were not statistically significant. The results indicate that changes in genome size that occurred during selection for cold tolerance are the result of changes in amounts of C-band heterochromatin and that the selection process results in an increase in cell size in the cold tolerant populations.  相似文献   

9.
K P Singh  S N Raina  A K Singh 《Génome》1996,39(5):890-897
The 2C nuclear DNA amounts were determined for 99 accessions, representing 23 Arachis species from 8 of 9 taxonomic sections, and two synthetic amphidiploids. Mean 2C DNA amounts varied by 15.20%, ranging from 10.26 to 11.82 pg, between accessions of Arachis hypogaea (2n = 4x = 40). Nuclear DNA content variation (5.33-5.91 pg) was also detected among Arachis duranensis (2n = 2x = 20) accessions. The intraspecific variation in the two species may have resulted from indirect selection for favourable genome sizes in particular environmental conditions. The accessions belonging to A. hypogaea ssp. hypogaea (mean value 11.27 pg) with longer life cycle had significantly larger mean DNA content than the accessions of A. hypogaea ssp. fastigiata (mean value 10.97 pg). For 20 diploid (2n = 2x = 20) species of the genus, 2C nuclear DNA amounts ranged from approximately 3 to 7 pg. The diploid perennial species of section Arachis have about 12% more DNA than the annual species. Comparisons of DNA amounts show that evolutionary rating is not a reliable guide to DNA amounts in generic sections of the genus; lower DNA values with evolutionary advancement were found in sections Heteranthae and Triseminatae, but the same was not true for sections Arachis and Caulorrhizae. Similarly, there is evidence of significant differences in DNA content between 4 ancient sections (Procumbentes, Erectoides, Rhizomatosae, and Extranervosae) of the genus. The occurrence of genome size plasticity in both A. duranensis and A. hypogaea provides evidence that A. duranensis could be one of the diploid progenitors of A. hypogaea. The DNA content in the two synthetic amphidiploids corresponded to the sum value estimated for parental species. Key words : Arachis species, genome size, Arachis hypogaea, Arachis duranensis, intraspecific variation.  相似文献   

10.
The number of mitotic chromosomal C-bands, the percent of the genome comprised of C-band heterochromatin, and genome size (4C DNA content) were determined for 22 North American inbred and open-pollinated lines of Zea mays. The number of C-bands ranged from 0 in Tama Knobless Flint to 18 in Zapolate Grande. The percent C-band heterochromatin ranged from 0% in Tama Knobless Flint to 16.9% in Tx601. Genome size varied over 23%: Gaspe Flint had the lowest DNA content (9.82 pg), and Zapolate Grande had the highest (12.12 pg). Genome size and the amount of heterochromatin were significantly correlated. The corn lines were assigned to five maturity zones encompassing a south-to-north range from Mexico to Canada. Significant negative correlations were detected between the amount of C-band heterochromatin and maturity zones, and between DNA content and maturity zones among the lines. It is speculated that the simultaneous selection by man for earlier maturation and plant size may be related to the lower DNA content of corn varieties adapted to higher latitudes. Such selection for larger plants may have been achieved through selection for more cells, which could result from the shorter mitotic cycle time that correlates with reduced DNA amount.  相似文献   

11.
12.
Bosco G  Campbell P  Leiva-Neto JT  Markow TA 《Genetics》2007,177(3):1277-1290
The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although "whole"-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate of genome sizes that include heterochromatin or repetitive DNA content. Moreover, genome sequences typically represent only one strain or isolate of a single species that does not reflect intraspecies variation. To more accurately estimate whole-genome DNA content and compare these estimates to newly assembled genomes, we used flow cytometry to measure the 2C genome values, relative to Drosophila melanogaster. We estimated genome sizes for the 12 sequenced Drosophila species as well as 91 different strains of 38 species of Drosophilidae. Significant differences in intra- and interspecific 2C genome values exist within the Drosophilidae. Furthermore, by measuring polyploid 16C ovarian follicle cell underreplication we estimated the amount of satellite DNA in each of these species. We found a strong correlation between genome size and amount of satellite underreplication. Addition and loss of heterochromatin satellite repeat elements appear to have made major contributions to the large differences in genome size observed in the Drosophilidae.  相似文献   

13.
DNA from Plethodon cinereus cinereus separates into two fractions on centrifugation to equilibrium in neutral CsCl. The smaller of these fractions has been described as a high-density satellite. It represents about 2% of nuclear DNA from this species, and it has a density of 1.728 g/cm3. It is cytologically localized near the centromeres of all 14 chromosomes of the haploid set. In P. c. cinereus the heavy satellite DNA constitutes about 1/4 of the DNA in centromeric heterochromatin. The nature of the rest of the DNA in centromeric heterochromatin is unknown. The number of heavy satellite sequences clustered around the centromeres in a chromosome from P. c. cinereus is roughly proportional to the size of the chromosome, as determined by in situ hybridization with satellite-complementary RNA, and autoradiography. Likewise the amount of contromeric heterochromatin, as identified by its differential stainability with Giemsa, shows a clear relationship to chromosome size. — The heavy satellite sequences identified in DNA from P. c. cinereus are also present in smaller amounts in other closely related forms of Plethodon. Plethodon cinereus polycentratus and P. richmondi have approximately half as many of these sequences per haploid genome as P. c. cinereus. P. hoffmani and P. nettingi shenandoah have about 1/3 as many of these sequences as P. c. cinereus. P. c. cinereus, P. c. polycentratus, and P. richmondii all have detectable heavy satellites with densities of 1.728 g/cm3. Among these forms, satellite size as determined by optical density measurements, and number of satellite sequences as determined from hybridization studies, vary co-ordinately. P. c. cinereus heavy satellite sequences are not detectable in P. nettingi, P. n. hubrichti, or P. dorsalis. The latter species has a heavy satellite with a density of 1.718 g/cm3, representing about 8% of the genomic DNA, and two light satellites whose properties have not been investigated. The heavy satellite of P. dorsalis is cytologically localized in the centromeric heterochromatin of this species. — These observations are discussed in relation to the function and evolution of highly repetitive DNA sequences in the centromeric heterochromatin of salamanders and other organisms.  相似文献   

14.
Earlier, in an integral genetic study, the Asian and European races were distinguished within the species Sylvaemus uralensis (pygmy wood mouse) and the European race was divided into the East European and South European forms. Each of these groups differed from the others, in particular, in the quantity of the centromeric heterochromatin in karyotypes of the animals. To establish the pattern of its changes in S. uralensis, in the present study the DNA content in splenocyte nuclei in all races and forms of pygmy wood mice was assessed using DNA flow cytometry. The heterochromatin amount in karyotypes and genome size were shown to be correlated. The East European chromosomal race of S. uralensis (Central Chernozem and Non-Chernozem regions of Russia, Crimea Peninsula, Middle Volga region, and Southern Ural) and the Asian race of this species (East Kazakhstan, Uzbekistan, and East Turkmenistan), which have respectively the highest and the lowest amounts of centromeric heterochromatin in the karyotype, exhibit the greatest difference in the DNA content in the genome. On average, the difference is approximately 8% in males and 6.7% in females; in both cases, the ranges of variability were distinctly different. Against the general background of the trait variation, the Asian race, whose members have the smallest DNA amount in their cells, looks homogeneous. The genome of the South European chromosomal form of S. uralensis (Caucasus, Transcaucasia, Carpathians, and Balkan Peninsula), which exhibits an intermediate content of the centromeric heterochromatin in the karyotype, is smaller that the genome of the East European race (by 3.2% in the group of males and by 1.9%, in the group of females), but larger than that of the Asian race (by 5% in either sex). Thus, the variability of size of centromeric C-blocks in pygmy wood mouse is likely to be associated with elimination (or, conversely, an increase in the amount) of the genetically inert chromatin. It is suggested that a significant contribution to the variability of genome size in S. uralensis is made by heterochromosomes, or, more precisely, their variable regions, which seem to be largely heterochromatic.  相似文献   

15.
Fluorescent chromosome banding and measurements of nuclear DNA content by image cytometry of Feulgen-stained cells were performed in one sample each of eight diploid (2n?=?24) species of Solanum: S.?endoadenium, S.?argentinum, S.?pseudocapsicum, S.?atropurpureum, S.?elaeagnifolium, S.?sisymbriifolium, S.?chenopodioides, and S.?palustre. The species studied could be distinguished by heterochromatin amount, banding patterns, and genome size. They exhibited only GC-rich heterochromatin and showed a comparatively low heterochromatin amount (expressed as percentage of haplotype karyotype length), ranging from 2.10 in S.?argentinum to 8.37 in S.?chenopodioides. Genome size displayed significant variation between species, with 1C-values ranging from 0.75?pg (735?Mbp) in S.?palustre to 1.79?pg (1,754?Mbp) in S.?sisymbriifolium. No significant correlation between genome size and heterochromatin amount was observed, but intrachromosomal asymmetry index (A 1) was negative and significantly correlated with heterochromatin amount. DNA content was positively and significantly correlated with karyotype length. DNA C-value distribution in the genus as well as karyotype affinities and relationships between species are discussed in relation to different infrageneric classifications of Solanum.  相似文献   

16.
The fecal viral flora of wild rodents   总被引:2,自引:0,他引:2  
The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals.  相似文献   

17.
Rye DNA sequences renaturing with a C0t <0.02 mol·sec/l, are largely undigested by the restriction enzyme HindIII. These HindIII-spared sequences are mostly located in telomeric heterochromatin. When digested with EcoRI* and cloned into the EcoRI site of pBR 325, these sequences yielded clones of two classes when hybridized to a probe of rapidly renaturing DNA. One class contains a DNA sequence which is a major constituent of the telomeric heterochromatic blocks, while the other is a minor component of the highly repeated DNA of the genome. The major component was sequenced, its chromosomal distribution mapped using wheat-rye addition lines and its distribution in meiotic prophase nuclei determined. The minor component is present in significant amounts in wheat as well as in rye and is localized at the terminal heterochromatic regions of three rye chromosomes but not in the major blocks of heterochromatin.  相似文献   

18.
社鼠和褐家鼠消化道长度和重量的季节变化   总被引:28,自引:0,他引:28  
杜卫国  鲍毅新 《动物学报》2000,46(3):271-277
测定了浙江金华的社鼠和褐家鼠消化道长度和重量的季节变化。野生社鼠消化道各器官无论长度不审重量都有明显季差异,在寒冷的冬季具有相对较大的小肠、大肠、盲肠、雄性社鼠的消化道长度在秋季由于食物条件的改善而明显下降,但雌性社鼠由于在秋季仍有繁殖负担,其消化道长度下降不明显,而家栖的褐家鼠只有总消化道、小肠和大肠的长度有季节差异,冬、春季高于夏、秋季。消化道形态季节变化与温度、食物条件和繁殖有关。  相似文献   

19.
Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.  相似文献   

20.
Transgenic mice carrying bovine satellite DNA IV were obtained. The size of the transgene integrated into the mouse genome was approximately 390 kb (about 100 transgene copies) as determined by a semiquantitative PCR. Restriction analysis with isoschizomeric restrictases HpaII and MspI, showed that the alien DNA was methylated. In the genome of a transgenic founder male, two integration sites for satellite DNA IV were revealed by in situ hybridization and in situ PCR. These sites are situated on two different chromosomes: in pericentromeric heterochromatin and within a chromosomal arm. In transgenic mice, de novo formation of heterochromatin regions (C-block and the CMA3 disk within the centromeric heterochromatin of another chromosome) was revealed by C-banding and staining with chromomycin A3. This formation is not characteristic of mice, because their chromosomes normally contain no interstitial C-blocks or sequences intensely stained by chromomycin A3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号